Nav: Home

Study reveals magnetic process that can lead to more energy-efficient memory in computers

June 30, 2020

Researchers at Virginia Commonwealth University and the University of California, Los Angeles have made an important advance that could lead to more energy efficient magnetic memory storage components for computers and other devices.

Magnets are widely used for computer memory because their "up" or "down" polarity -- the magnetic state -- can be "flipped" to write or encode data and store information. Magnetic memory is nonvolatile, so information can be stored on devices without refreshing. However, magnetic memory also requires a lot of energy.

A recently discovered magnetic state called the skyrmion, which is neither "up" nor "down" but flower-shaped, offers a solution. Manipulating the skyrmion state allows for much more efficient, robust data storage for conventional computers and wireless smart devices.

"Our finding demonstrates the possibility of controlling skyrmion states using electric fields, which could ultimately lead to more compact, energy efficient nanomagnetic devices," said Dhritiman Bhattacharya, a doctoral candidate at the VCU College of Engineering and the lead author of the paper, "Creation and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy."

The paper published in the June 29 issue of the journal Nature Electronics.

Jayasimha Atulasimha, Ph.D., Qimonda Professor in the VCU Department of Mechanical and Nuclear Engineering, is Bhattachayra's dissertation adviser and corresponding author of the paper. The finding outlined in the paper is "a steppingstone toward ultimately developing commercially viable magnetic memory based on this paradigm," Atulasimha said.

In 2016 and 2018, the VCU researchers showed that using an intermediate skyrmion state to force precise magnetic transitions between the "up" and "down" state could reduce errors in writing information to memory, making devices more robust to material defects and thermal noise. They hold a patent on this idea. The new proof-of-concept experiment presented in Nature Electronics is the first step toward making such a device.
-end-
The research is funded by the National Science Foundation, the U.S. Department of Defense, the U.S. Department of Energy, VCU, UCLA and VCU's C. Kenneth and Dianne Harris Wright Virginia Microelectronics Center.

The paper was authored by Bhattacharya, Atulasimha and UCLA researchers Seyed Armin Razavi; Hao Wu, Ph.D.; Bingqian Dai; and Kang L. Wang, Ph.D.

Virginia Commonwealth University

Related Memory Articles:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.
Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.
Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.
Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.