Nav: Home

A new view of microscopic interactions

June 30, 2020

When two cars collide at an intersection -- from opposite directions -- the impact is much different than when two cars -- traveling in the same direction -- "bump" into each other. In the laboratory, similar types of collisions can be made to occur between molecules to study chemistry at very low temperatures, or "cold collisions."

A team of scientists led by Arthur Suits at the University of Missouri has developed a new experimental approach to study chemistry using these cold "same direction" molecular collisions. Suits said their approach hasn't been done before.

"When combined with the use of a laser that 'excites' the molecules, our approach produces specific 'hot' states of molecules, allowing us to study their individual properties and provide more accurate experimental theories," said Suits, a Curators Distinguished Professor of Chemistry in the College of Arts and Science. "This is a condition that does not occur naturally but allows for a better understanding of molecular interactions.

Suits equated their efforts to analyzing the results of a marathon race.

"If you only look at the average time it takes everyone to complete the Boston Marathon, then you don't really learn much detail about a runner's individual capabilities," he said. "By doing it this way we can look at the fastest 'runner,' the slowest 'runner,' and also see the range and different behaviors of individual 'runners,' or molecules in this case. Using lasers, we can also design the race to have a desired outcome, which shows we are gaining direct control of the chemistry."

Suits said this is one of the first detailed approaches of its kind in this field.

"Chemistry is really about the collisions of molecules coming together and what causes chemical reactions to occur," he said. "Here, instead of crossing two beams of molecules with each other as researchers have often done before, we are now pointing both beams of molecules in the same direction. By also preparing the molecules in those beams to be in specific states, we can study collisions in extreme detail that happen very slowly, including close to absolute zero, which is the equivalent of the low temperature states needed for quantum computing."
-end-
"State-to-state scattering of highly vibrationally excited NO at broadly tunable energies," was published in Nature Chemistry. Other authors include Chandika Amarasinghe, Hongwei Li and Chatura A. Perera at MU; Matthieu Besemer, Ad van der Avoird and Gerrit C. Groenenboom at Radboud University in the Netherlands; Junxiang Zuo and Hua Guo at the University of New Mexico; Changjian Xie at the University of New Mexico and Northwest University in China; and Jacek K?os at the University of Maryland.

The research was supported by the U.S. Army Research Office, the U.S. Air Force Office of Scientific Research, the U.S. National Science Foundation, the Netherlands Organization for Scientific Research and the European Research Council under the European Union's Horizon 2020 Research and Innovation Program. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

University of Missouri-Columbia

Related Chemistry Articles:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.
Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.
Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.
Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.
Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.
Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.
Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
More Chemistry News and Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.