Nav: Home

Mathematical noodling leads to new insights into an old fusion problem

June 30, 2020

A challenge to creating fusion energy on Earth is trapping the charged gas known as plasma that fuels fusion reactions within a strong magnetic field and keeping the plasma as hot and dense as possible for as long as possible. Now, scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have gained new insight into a common type of hiccup known as the sawtooth instability that cools the hot plasma in the center and interferes with the fusion reactions. These findings could help bring fusion energy closer to reality.

"Conventional models explain most instances of the sawtooth crashes, but there is a tenacious subset of observations that we have never been able to explain," said PPPL physicist Christopher Smiet, lead author of a paper reporting the results in Nuclear Fusion. "Explaining those unusual occurrences would fill a gap in understanding the sawtooth phenomenon that has existed for almost 40 years."

Fusion combines light elements in the form of plasma -- the hot, charged state of matter composed of free electrons and atomic nuclei -- and in the process generates massive amounts of energy in the sun and stars. Scientists are seeking to replicate fusion in devices on Earth for a virtually inexhaustible supply of safe and clean power to generate electricity.

Researchers have known for decades that the temperature at the core of fusion plasma often rises slowly and can then suddenly drop -- an unwanted occurrence since the cooler temperature reduces efficiency. The prevailing theory is that the crash occurs when a quantity called the safety factor, which measures the stability of the plasma, drops to a measurement of close to 1. The safety factor relates to how much twist is in the magnetic field in the doughnut-shaped tokamak fusion facilities.

However, some observations suggest that the temperature crash occurs when the safety factor drops to around 0.7. This is quite surprising and cannot be explained by the most widely accepted theories.

The new insight, coming not from plasma physics but from abstract mathematics, shows that when the safety factor takes specific values, one of which is close to 0.7, the magnetic field in the plasma core can change into a different configuration called alternating-hyperbolic. "In this topology, the plasma is lost in the core," Smiet says. "The plasma is expelled from the center in opposite directions. This leads to a new way for the magnetic cage to partially crack, for the temperature in the core to suddenly fall, and for the process to repeat as the magnetic field and temperature slowly recover."

The new insights suggest an exciting new research direction toward keeping more heat within the plasma and producing fusion reactions more efficiently. "If we can't explain these outlier observations, then we don't fully understand what's going on in these machines," Smiet said. "Countering the sawtooth instability can lead to producing hotter, more twisty plasmas and bring us closer to fusion."

This model arose from purely abstract mathematical research. Smiet found a mathematical way to describe the magnetic field in the center of a tokamak. All possible configurations can then be associated with an algebraic structure called a Lie group. "The mathematics is really quite beautiful," Smiet says. "This mathematical group gives you a birds-eye view of all possible magnetic configurations and when one configuration can change into another."

The new model shows that one of the times the magnetic configuration in a tokamak can change is when the safety factor falls to precisely two-thirds, or 0.666. "This is eerily close to the value of 0.7 that has been seen in experiments, particularly so when experimental uncertainty is taken into account," Smiet said. "One of the most beautiful parts of these results," he said, "is that they came from just noodling around with pure mathematics."

Smiet hopes to verify the new model by running experiments on a tokamak. "The mathematics has shown us what to look for," he said, "so now we should be able to see it."
PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit

DOE/Princeton Plasma Physics Laboratory

Related Magnetic Field Articles:

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.
Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.