Environmentally friendly, lower-cost alternative fuels, solvents, plastics are on the horizon

June 30, 1999

RICHLAND, Wash. - Alternative fuels may be one step closer to popular use thanks to the combination of two new technologies. This marriage of technologies is expected to have such a positive impact on the environment that it has just earned one of four Presidential Green Chemistry Challenge Awards, www.epa.gov/ opptintr/ greenchemistry/presgcc.htm

The award recognizes the use of biomass or waste plant matter to produce useful chemicals, in this case levulinic acid and its derivatives. Biofine, a small Massachusetts company, has developed an economical method of turning paper mill waste into levulinic acid, an important, multipurpose chemical. With the Biofine process, virtually any biomass waste products can be used to create the acid for as little as one-tenth the cost of current manufacturing processes.

Those cost savings are key to using a second process that creates, from levulinic acid, an important component for use in alternative fuels. The Department of Energy's Pacific Northwest National Laboratory has developed the first ever multi-step, catalytic process to convert levulinic acid to useful products, including an alternative fuel component called methyltetrahydrofuran or MTHF. MTHF can be used with ethanol and natural gas liquids to create a cleaner burning fuel for cars and trucks that produces less air pollution than petroleum-based gasoline.

"Our system incorporates multiple chemical reaction steps into one process and creates higher yields than previously available," said Doug Elliott of Pacific Northwest's chemical process development group. The catalytic process produces about 110 gallons of alternative fuel component for every 100 gallons of levulinic acid.

The patented process is conducted at elevated temperatures and pressures inside a continuous flow reactor. The levulinic acid is mixed with hydrogen. Then both compounds are pumped through a reactor filled with a catalyst where a series of chemical reactions occur at about 240 degrees Celsius (464 degrees Fahrenheit) and 100 atmospheres of pressure to create MTHF. Support for the Pacific Northwest research came from the DOE's Office of Industrial Technologies.

"This is an exciting technology emerging from DOE's investments in biomass conversion, a field where we are literally just touching the surface of the potential for using low-value and waste biomass material for valuable products," said Dennis Stiles, manager of Agriculture and Food Processing Technology programs at Pacific Northwest. "In the near future, the technology will be expanded to produce levulinic acid from other organic wastes, such as straw, as well as producing a variety of other chemical products, such as solvents, herbicides and plastics, in addition to MTHF."

Pacific Northwest has partnered with Biofine, which has a pilot-scale levulinic conversion facility in South Glens Falls, N.Y. The levulinic acid production technology is ready for commercialization and an industry search currently is in progress to site a manufacturing plant in a major pulp and paper-producing region. Scaled-up demonstration of the MTHF production process is planned for the near future. The planned commercial plant would use paper mill waste products to produce levulinic acid and would upgrade the material to MTHF to sell as a solvent initially. A benefit for the pulp and paper industry would be a reduction in the cost of managing the waste sludge which is dried and composted or transported to landfills, or spread on land.
Business inquiries on the acid conversion technology or other Pacific Northwest technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov

Pacific Northwest is one of DOE's nine multiprogram national laboratories and conducts research in the fields of environment, energy, health sciences and national security. Battelle, based in Columbus, Ohio, has operated Pacific Northwest for DOE since 1965.

DOE/Pacific Northwest National Laboratory

Related Biomass Articles from Brightsurf:

Bound for the EU, American-made biomass checks the right boxes
A first-of-its-kind study published in the journal Scientific Reports finds that wood produced in the southeastern United States for the EU's renewable energy needs has a net positive effect on US forests--but that future industry expansion could warrant more research.

The highest heat-resistant plastic ever is developed from biomass
The use of biomass-derived plastics is one of the prime concerns to establish a sustainable society, which is incorporated as one of the Sustainable Development Goals.

Laser technology measures biomass in world's largest trees
Laser technology has been used to measure the volume and biomass of giant Californian redwood trees for the first time, records a new study by UCL researchers.

Inducing plasma in biomass could make biogas easier to produce
Producing biogas from the bacterial breakdown of biomass presents options for a greener energy future, but the complex composition of biomass comes with challenges.

Microbes working together multiply biomass conversion possibilities
Non-edible plants are a promising alternative to crude oil, but their heterogenous composition can be a challenge to producing high yields of useful products.

Evergreen idea turns biomass DNA into degradable materials
A Cornell-led collaboration is turning DNA from organic matter -- such as onions, fish and algae -- into biodegradable gels and plastics.

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.

A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.

Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.

Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.

Read More: Biomass News and Biomass Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.