Plants put limit on ice ages

July 01, 2009

Palo Alto, CA-- When glaciers advanced over much of the Earth's surface during the last ice age, what kept the planet from freezing over entirely? This has been a puzzle to climate scientists because leading models have indicated that over the past 24 million years geological conditions should have caused carbon dioxide levels in the atmosphere to plummet, possibly leading to runaway "icehouse" conditions. Now researchers writing in the July 2, 2009, Nature report on the missing piece of the puzzle - plants.

"Atmospheric CO2 concentrations have been remarkably stable over the last 20 or 25 million years despite other changes in the environment," says co-author Ken Caldeira of the Carnegie Institution's Department of Global Ecology. "We can look to land plants as the primary buffering agent that's held CO2 in such a narrow range during this time."

The research team, led by Mark Pagani of Yale University, found that the critical role of plants in the chemical breakdown and weathering of rocks and soil gave them a strong influence on carbon dioxide levels. It was a link that earlier studies had missed.

Over geologic time, large volumes of carbon dioxide have been released into the atmosphere by volcanoes. This would cause CO2 to build up in the atmosphere were it not for countervailing geologic processes of sedimentation, which bury carbon-containing minerals in the crust, sequestering it from the atmosphere. The overall rate of sedimentation is controlled by the upthrust of mountains and the erosion and chemical breakdown of their rocks. The rise of the Andes, Himalayas, Tibetan Plateau, and mountain ranges in western North America over the past 25 million years would have been expected to have cause faster weathering and erosion, and therefore a faster burial of carbon drawn from the atmosphere. But the stability of carbon dioxide levels indicate that this didn't happen. Why not?

This is where the plants come in. "The rates of weathering reactions are largely controlled by plants. Their roots secrete acids that dissolve minerals, they hold soils, and they increase the amount of carbon dissolved in groundwater," says Caldeira. "But when levels of carbon dioxide get too low, the plants basically suffocate and the weathering slows down. That means less sediment is eroded from the uplands and less carbon can be buried. It's a negative feedback on the system that has kept carbon dioxide levels from dropping too low."

Extremely low carbon dioxide levels would have reduced the atmosphere's ability to retain heat, putting the planet into a deep freeze. "So you could say that by limiting the drawdown of CO2 by chemical weathering and sedimentation, plants saved the planet from freezing over," says Caldeira.

Could plants save us from rising carbon dioxide from human emissions and harmful greenhouse warming? No, says Caldeira. "We are releasing CO2 to the atmosphere about 100 times faster than all the volcanoes in the world put together. While these weathering processes will eventually remove the CO2 we are adding to the atmosphere, they act too slowly to help us avoid dangerous climate change. It will take hundreds of thousands of years for these rock weathering processes to remove our fossil fuel emissions from the atmosphere."
The Carnegie Institution ( has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science. The Department of Global Ecology, located in Stanford, California, was established in 2002 to help build the scientific foundations for a sustainable future. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

Carnegie Institution for Science

Related Ice Age Articles from Brightsurf:

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Ice Age manatees may have called Texas home
Manatees don't live year-round in Texas, but these gentle sea cows are known to occasionally visit, swimming in for a 'summer vacation' and returning to warmer waters for the winter.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How cold was the ice age? Researchers now know
A University of Arizona-led team has nailed down the temperature of the last ice age -- the Last Glacial Maximum of 20,000 years ago - to about 46 degrees Fahrenheit.

What causes an ice age to end?
Research by an international team helps to resolve some of the mystery of why ice ages end by establishing when they end.

New study results consistent with dog domestication during ice age
Analysis of Paleolithic-era teeth from a 28,500-year-old fossil site in the Czech Republic provides supporting evidence for two groups of canids -- one dog-like and the other wolf-like - with differing diets, which is consistent with the early domestication of dogs.

Did an extraterrestrial impact trigger the extinction of ice-age animals?
Based on research at White Pond near Elgin, South Carolina, University of South Carolina archaeologist Christopher Moore and 16 colleagues present new evidence of a controversial theory that suggests an extraterrestrial body crashing to Earth almost 13,000 years ago caused the extinction of many large animals and a probable population decline in early humans.

Dust in ice cores leads to new knowledge on the advancement of the ice before the ice age
Working with the ice core ReCap, drilled close to the coast in East Greenland, postdoc Marius Simonsen wondered why the dust particles from the interglacial period -- the warmer period of time between the ice ages -- were several times bigger than the dust particles from the ice age.

Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.

What triggered the 100,000-year Ice Age cycle?
A slowing of ocean circulation in the waters surrounding Antarctica drastically altered the strength and more than doubled the length of global ice ages following the mid-Pleistocene transition, a new study finds.

Read More: Ice Age News and Ice Age Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to