Nanotechnology may increase longevity of dental fillings

July 01, 2009

AUGUSTA, Ga. - Tooth-colored fillings may be more attractive than silver ones, but the bonds between the white filling and the tooth quickly age and degrade. A Medical College of Georgia researcher hopes a new nanotechnology technique will extend the fillings' longevity.

"Dentin adhesives bond well initially, but then the hybrid layer between the adhesive and the dentin begins to break down in as little as one year," says Dr. Franklin Tay, associate professor of endodontics in the MCG School of Dentistry. "When that happens, the restoration will eventually fail and come off the tooth."

Half of all tooth-colored restorations, which are made of composite resin, fail within 10 years, and about 60 percent of all operative dentistry involves replacing them, according to research in the Journal of the American Dental Association.

"Our adhesives are not as good as we thought they were, and that causes problems for the bonds," Dr. Tay says.

To make a bond, a dentist etches away some of the dentin's minerals with phosphoric acid to expose a network of collagen, known as the hybrid layer. Acid-etching is like priming a wall before it's painted; it prepares the tooth for application of an adhesive to the hybrid layer so that the resin can latch on to the collagen network. Unfortunately, the imperfect adhesives leave spaces inside the collagen that are not properly infiltrated with resin, leading to the bonds' failure.

Dr. Tay is trying to prevent the aging and degradation of resin-dentin bonding by feeding minerals back into the collagen network. With a two year, $252,497 grant from the National Institute of Dental & Craniofacial Research, he will investigate guided tissue remineralization, a new nanotechnology process of growing extremely small, mineral-rich crystals and guiding them into the demineralized gaps between collagen fibers.

His idea came from examining how crystals form in nature. "Eggshells and abalone [sea snail] shells are very strong and intriguing," Dr. Tay says. "We're trying to mimic nature, and we're learning a lot from observing how small animals make their shells."

The crystals, called hydroxyapatite, bond when proteins and minerals interact. Dr. Tay will use calcium phosphate, a mineral that's the primary component of dentin, enamel and bone, and two protein analogs also found in dentin so he can mimic nature while controlling the size of each crystal.

Crystal size is the real challenge, Dr. Tay says. Most crystals are grown from one small crystal into a larger, homogeneous one that is far too big to penetrate the spaces within the collagen network. Instead, Dr. Tay will fit the crystal into the space it needs to fill. "When crystals are formed, they don't have a definite shape, so they are easily guided into the nooks and crannies of the collagen matrix," he says.

In theory, the crystals should lock the minerals into the hybrid layer and prevent it from degrading. If Dr. Tay's concept of guided tissue remineralization works, he will create a delivery system to apply the crystals to the hybrid layer after the acid-etching process.

"Instead of dentists replacing the teeth with failed bonds, we're hoping that using these crystals during the bond-making process will provide the strength to save the bonds," Dr. Tay says. "Our end goal is that this material will repair a cavity on its own so that dentists don't have to fill the tooth."
-end-


Medical College of Georgia at Augusta University

Related Collagen Articles from Brightsurf:

Catch and release: collagen-mediated control of PEDF availability
Extracellular ligand PEDF holds cell fate in its hands, inducing cell death or promoting survival depending on which host cell receptor it binds to.

Stretched beyond the limits
It's a common phenomenon we know from cracked sneakers and burst tyres: worn-out materials can cause anything from mild annoyance to fatal accidents.

Study shows biocell collagen ingestion reduced signs of UVB-induced photoaging
New research finds BioCell Collagen Ingestion to reduce signs of UVB-Induced photoaging, which accounts for a significant amount of visible skin damage.

Delivery of healthy donor cells key to correcting bone disorder, UConn researchers find
n the journal STEM CELLS, research group of Dr. Ivo Kalajzic, lead investigator and professor, presents a study with potential for new treatments to address the root cause of weak and brittle bones.

Collagen fibers encourage cell streaming through balancing act
Engineers from the McKelvey School of Engineering at Washington University have shown that the length of collagen fibers has a roll to play in the ability of normal cells to become invasive.

Study shows BioCell collagen can visibly reduce common signs of skin aging within 12 weeks
In one of the most substantial studies of a skin health supplement, BioCell Collagen®, was found to visibly reduce common signs of skin aging, including lines and wrinkles, within 12 weeks of daily use.

3D printing new parts for our broken hearts
Researchers have developed a 'FRESH' new method of 3D printing complex anatomical structures out of collagen -- a primary building block in many human tissues.

I see the pattern under your skin
By combining multiphoton imaging and biaxial tissue extension a research team from Japan found that collagen in the skin is organized in a mesh-like structure, and that elastic fibers -- the connective tissue found in skin -- follows the same orientation.

GW pilot study finds collagen to be effective in wound closure
Researchers in the George Washington University Department of Dermatology found that collagen powder is just as effective in managing skin biopsy wounds as primary closure with non-absorbable sutures.

Confining cell-killing treatments to tumors
Researchers at the Koch Institute for Integrative Cancer Research at MIT have developed a technique to prevent cytokines escaping once they have been injected into the tumor, by adding a Velcro-like protein that attaches itself to the tissue.

Read More: Collagen News and Collagen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.