Key to evolutionary fitness: Cut the calories

July 01, 2009

Charles Darwin and his contemporaries postulated that food consumption in birds and mammals was limited by resource levels, that is, animals would eat as much as they could while food was plentiful and produce as many offspring as this would allow them to. However, recent research has shown that, even when food is abundant, energy intake reaches a limit, even in animals with high nutrient demands, such as lactating females. Scientists at the Research Institute of Wildlife Ecology in Vienna suggest that this is due to active control of maternal investment in offspring in order to maintain long-term reproductive fitness.

The research, to be presented by Dr Teresa Valencak at the Society for Experimental Biology Annual Meeting in Glasgow has shown that, when their energy reserves are low or when their offspring are kept in cooler temperatures, Brown hares are able to increase their energy turnover and rate of milk production above that normally observed. This indicates that, ordinarily, the hares are operating at below their maximum capacity and shows that this is not due to any kind of physiological constraint, such as length of digestive tract or maximum capacity of mammary glands. Also, as the hares were provided with plentiful food, there could be no limitation of energy turnover due to food availability.

The way that females regulated their energy expenditure according to pup demand and their own fat reserves but did not exceed certain levels fitted with the group's theory that using energy at close to the maximum rate has costs for animals which may compromise their ability to successfully reproduce in the future. If a hare puts most of its energy into a litter of pups then it will have little left over for growth and body repairs for example, which may shorten its life or make it less able to produce or care for young in the future. By actively limiting the rate of energy turnover, a mother can prevent this and maintain a higher level of reproductive success over her lifetime.
-end-


Society for Experimental Biology

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.