UCLA collaboration identifies immune system link to schizophrenia

July 01, 2009

Schizophrenia is a devastating mental disease, thought to be caused by the interaction of both genetic and environmental factors. Because there is no biochemical test that can identify the disorder, physicians rely upon the recognition of its symptoms -- which can include auditory hallucinations and paranoia -- in order to make their diagnosis.

Now following on their earlier work that identified three gene locations that may be implicated in schizophrenia, researchers at UCLA and colleagues from around the world have, for the first time, identified additional genes that confirm what scientists have long suspected -- that the immune system may play a role in the development of the disorder. Further, they have also identified genetic anomalies that disrupt the cellular pathways involved in brain development, memory and cognition, all markers of schizophrenia.

The research appears in the July 1 online edition of the journal Nature.

Roel Ophoff, the co-lead author and an assistant professor at the Center for Neurobehavioral Genetics at the UCLA Semel Institute for Neuroscience and Human Behavior, and his collaborators from nearly 50 institutions worldwide, performed a genome-wide scan of 2,663 people diagnosed with schizophrenia and 13,498 controls from eight European locations. They were looking for single nucleotide polymorphisms (SNP), genetic variations that are commonly present in the general population but more often present in those suffering from the disorder. In total, nearly 314,000 SNPs were included in their analysis.

They found significant associations with genetic markers on the Major Histocompatibility Complex (MHC), a group of genes that controls several aspects of the immune response. Further, they discovered additional variations in two other genes, called NRGN and TCF4, which points to perturbation of pathways involved in brain development, memory and cognition.

"This is another step forward in understanding the biological basis of this disorder, one that robs people of their lives," said Ophoff, who holds a joint appointment at the University of Utrecht, The Netherlands. "It also shows the importance of worldwide collaborations for the study of schizophrenia genetics, because it allows us to do very large numbers of scans."

The findings are significant yet not without challenge, said Ophoff, since the study aimed at the "common variants" in the human genome. "In other words," he said, "these are not rare mutations present in only a few individuals, but these genetic variants are abundantly present in the population. Anybody could carry this variant, but that doesn't mean they will necessarily develop the disease. Yet, when you look at the population at large, these variants are more often present in patients than in healthy control subjects."

And that's important, he noted, in developing new techniques to thwart the disease. "Knowing these specific genes are involved in the pathway leading to schizophrenia provides unique clues as to which molecular mechanisms are involved," he said.

While the association between schizophrenia and the immune system has long been suspected, the evidence for it has, until now, been mostly circumstantial. And impaired cognitive and memory functions are increasingly being recognized as core features of schizophrenia, which are poorly addressed by current medications.

"The three common genetic variants we describe, then, which we feel predisposes certain individuals to schizophrenia, have the potential to be translated into targets for the development of new and novel medications," Ophoff said.
-end-
Some 40 other authors and institutions contributed to the paper, and there were multiple funding sources; for UCLA, funding was provided by the National Institute of Mental Health. Other UCLA authors included Dr. Nelson Freimer, director of the Center for Neurobehavioral Genetics and professor of psychiatry, and Rita Cantor, professor of human genetics, both members of the David Geffen School of Medicine. The UCLA authors report no conflicts of interest.

The Semel Institute for Neuroscience and Human Behavior is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, the institute faculty seeks to develop effective treatments for neurological and psychiatric disorders, improve access to mental health services and shape national health policy regarding neuropsychiatric disorders.

University of California - Los Angeles

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.