UNC study rewrites textbook on key genetic phenomenon

July 01, 2009

CHAPEL HILL, N.C. - Because females carry two copies of the X chromosome to males' one X and one Y, they harbor a potentially toxic double dose of the over 1000 genes that reside on the X chromosome.

To compensate for this imbalance, mammals such as mice and humans shut down one entire X-chromosome through a phenomenon known as X-inactivation. For almost two decades, researchers have believed that one particular gene, called Xist, provides the molecular trigger of X-inactivation.

Now, a new UNC study appearing online July 1 in the journal Nature disputes the current dogma by showing that this process can occur even in the absence of this gene.

"Our study contradicts what is written in the textbooks," said senior study author Terry Magnuson, Ph.D., Sarah Graham Kenan Professor and chair of genetics, director of the Carolina Center for Genome Sciences and a member of the UNC Lineberger Comprehensive Cancer Center. "Everybody thought that Xist triggers X-inactivation, but now we have to rethink how this important process starts."

Previous studies showed that the Xist gene was active or "turned on" early in the course of X-inactivation and that disruptions in the gene resulted in irregular X-inactivation, eventually leading to the accepted assumption that Xist was the trigger. But it wasn't clear in the literature if this genetic phenomenon would initiate if Xist isn't present, said lead study author Sundeep Kalantry, Ph.D., postdoctoral fellow in the UNC department of genetics.

Kalantry used three different molecular techniques to look at X-inactivation in the embryos of mice that were genetically engineered to contain a defective Xist gene on their future inactive X-chromosome. He discovered that the genes on this X-chromosome could be silenced regardless of whether they produced Xist. But while Xist was not absolutely required to start X-inactivation, without it genes along the X-chromosome eventually became active again. Thus, Xist appears to stabilize silencing of the X-chromosome over the long term.

Unlike most genes, the Xist gene doesn't code for a protein. Rather, it acts at the level of RNA - a copy of the DNA genetic sequence - which serves to recruit protein complexes through a process known as epigenetics. These proteins then form a molecular scaffold along the inactive-X chromosome that can stably silence the genes contained within it. The UNC researchers are now actively investigating how this chromosomal remodeling begins in the first place.

"If we can figure out the mechanism that triggers X-inactivation, we can potentially apply this knowledge to diseases that have an epigenetic component," Kalantry said. "So it can have implications not only in fundamentally understanding X-inactivation but also to gain insight into the increasing array of illnesses where the epigenetic machinery has gone awry - such as in prostate and breast cancers."
-end-
Along with Magnuson and Kalantry, study co-authors are Sonya Purushothaman, undergraduate student; Randall Bryant Bowen, research technician; and Joshua Starmer; Ph.D., postdoctoral fellow. The research was supported in part by the National Institutes of Health and by an American Cancer Society Postdoctoral Fellowship.

University of North Carolina Health Care

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.