Plants save the earth from an icy doom

July 01, 2009

New Haven, Conn. -- Fifty million years ago, the North and South Poles were ice-free and crocodiles roamed the Arctic. Since then, a long-term decrease in the amount of CO2 in the atmosphere has cooled the Earth. Researchers at Yale University, the Carnegie Institution of Washington and the University of Sheffield now show that land plants saved the Earth from a deep frozen fate by buffering the removal of atmospheric CO2 over the past 24 million years.

While the upper limit for atmospheric CO2 levels has been a focus for discussions of global warming and the quality of life on Earth, this study points to the dynamics that maintain the lower sustainable limits of atmospheric CO2.

Volcanic gases naturally add CO2 to the atmosphere, and over millions of years CO2 is removed by the weathering of silica-based rocks like granite and then locked up in carbonates on the floor of the world's oceans. The more these rocks are weathered, the more CO2 is removed from the atmosphere.

"Mountain building in places like Tibet and South America during the past 25 million years created conditions that should have sucked nearly all the CO2 out of the atmosphere, throwing the Earth into a deep freeze," said senior author Mark Pagani, associate professor of geology and geophysics and a member of the Yale Climate and Energy Institute's executive committee. "But as the CO2 concentration of Earth's atmosphere decreased to about 200 to 250 parts per million, CO2 levels stabilized."

The study, published in the XX issue of Nature, looked for a possible explanation They used simulations of the global carbon cycle and observations from plant growth experiments to show that as atmospheric CO2 concentrations began to drop towards near-starvation levels for land plants, the capacity of plants and vegetation to weather silicate rocks greatly diminished, slowing the draw-down of atmospheric CO2.

"When CO2 levels become suffocatingly low, plant growth is compromised and the health of forest ecosystems suffer," said Pagani. "When this happens, plants can no longer help remove CO2 from the atmosphere faster than volcanoes and other sources can supply it."

"Ultimately, we owe another large debt to plants" said co-author Ken Caldeira from the Carnegie Institution of Washington at Stanford University. "Aside from providing zesty dishes like eggplant parmesan, plants have also stabilized Earth's climate by inhibiting critically low levels of CO2 that would have thrown Earth spinning into space like a frozen ice ball."

Co-author David Beerling from Sheffield University adds, "Our research supports the emerging view that plants should be recognized as a geologic force of nature, with important consequences for all life on Earth"
Robert Berner, professor emeritus of geology and geophysics at Yale, is also an author on the study. The Yale Climate and Energy Institute; the National Science Foundation; the Department of Energy; the Leverhulme Trust and a Royal Society-Wolfson Research Merit Award supported the research.

The Yale Climate and Energy Institute (YCEI) is a newly established interdisciplinary institute focused on bridging research and policy around climate and energy issues so that practical solutions can be implemented in both the developing and developed world.

An interview with Mark Pagani is available at

Citation: Nature, (doi:10.1038/nature08133)

Yale University

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to