Anemones take the heat with a little help from their friends

July 01, 2018

A core set of heat-stress-response genes has been identified in anemones in a study that also highlights the role of symbiotic algae in coping with temperature, an important revelation for planning conservation efforts.

Researchers from KAUST's Red Sea Research Center profiled gene transcripts and proteins expressed by sea anemones--three strains of the model organism Aiptasia pallida--from locations that experience different temperatures throughout the year: North Carolina, Hawaii and the Red Sea.

The research team found significant differences between a strain's transcriptome and proteome at the baseline temperature and even more pronounced differences in their heat-stress response. This is in line with recent findings that transcript and protein profiles don't always match, highlighting the need to study both responses.

The team identified a core set of 170 responsive genes in all three strains, many of which were related to coping with oxidative stress. As expected, anemones from the Red Sea had the best heat tolerance and also expressed more oxidative stress genes. However, by comparing different strains at the same temperature rather than the effect of different temperatures on a single strain, the researchers discovered that strongest expression of oxidative stress genes was in the North Carolina strain. "This was a big surprise because it showed us that the Red Sea strain itself didn't actually have the best capacity to respond to oxidative stress," says Maha Cziesielski, the study's lead author.

Until now, molecular studies have focused only on the anemones. When the team tested the symbiotic algae that live in the anemones, they found that the symbionts drove the response patterns seen in the hosts. The Red Sea symbiont produced the least reactive oxygen, which causes oxidative stress. "So even if all three strains had the same antioxidant capacity, the Red Sea strain would probably cope best, simply because overall it would have less exposure thanks to the symbiont," says Cziesielski.

"Transcriptomic data can give us really great insight into important changes in regulatory mechanisms," says Cziesielski, "but we need to validate these at the physiological level because that's what really tells us about the organism's capacity to respond."

While these findings may help guide conservation of anemones and corals, the importance of the symbiont may present a challenge. The host-symbiont relationship has been fine-tuned through evolution, and though corals can switch symbionts, "you can't just take a symbiont of your liking, expose the coral to it and expect it to pick it up," says Czielsielski.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.