BioSA -- Bridging the gap with biodegradable metals

July 01, 2019

Millions of patients all over the world undergo surgical procedures related to bone defect repair every year. With an ever-increasing life expectancy and the issues that come with a decaying skeleton, the number of interventions can only increase in the coming years. This is why orthopaedic surgeons are constantly looking for improved medical implants for the treatment of bone repair.

Following certain surgeries and traumatic experiences, like traffic accidents, patients often suffer from significant fractures and losses to the bone, referred to as bone defects. Bone scaffolds are porous implants that are used in order to fill significantly large defects. While the currently available solutions are suitable when implanted in non-load bearing areas, like the face, using a stronger material could result in a more attractive option when filling defects in load-bearing areas, like the bones found in legs.

The University of Malta has teamed up with Mater Dei Hospital to address the shortcomings of current bone scaffolds on the market in a project entitled Biodegradable Iron for Orthopaedic Scaffold Applications - BioSA. The project is being led by Prof. Ing. Joseph Buhagiar, from the Department of Metallurgy and Materials Engineering, and also involves members from the surgical team at the Department of Orthopaedic, Trauma and Sports Medicine at Mater Dei Hospital under the coordination of Mr Ray Gatt M.D., as well as academics from various departments at the University of Malta. The team members are pooling their expertise to develop an improved bone regeneration scaffold design with optimised characteristics.

Despite the fact that ceramic scaffolds are widely used, their tendency to break due to their brittle nature, has made them inadequate for use in bones that are subjected to sudden loading, while polymeric scaffolds lack the mechanical strength to be used in load-bearing applications. Metals, on the other hand, have the potential to exhibit the perfect balance between strength and toughness. The BioSA scaffold is being designed such that it corrodes at a controlled rate within the body, to match the rate at which the bone is healing. This aspect could result in reducing the necessity of a second surgical intervention to remove the implant after bone has healed.

The BioSA team is focused on understanding the corrosion behaviour of such an implant while also studying the effect that such an implant has on cells found in the bone. Through an innovative processing technique, based on the use of metal powders, the team also aims to gain control over the shape of the final scaffold. Accidents can happen to everyone and defects can be bigger than the body can heal naturally. So ideally scaffolds are not designed as one-size-fits-all but can also be custom-made for a specific patient.
Project BioSA is being funded by the Malta Council for Science and Technology through FUSION: R&I Technical Development Program (R&I-037-2017).

University of Malta

Related Bone Articles from Brightsurf:

Perforated bone tissue from too little sugar
Bone marrow cancer is currently an incurable disease that affects about 400 people in Norway every year.

Buzzing to rebuild broken bone
Healing broken bones could get easier with a device that provides both a scaffold for the bone to grow on and electrical stimulation to urge it forward, UConn engineers report.

Self-healing bone cement
Material scientists at the University of Jena have developed a bone replacement based on calcium phosphate cement and reinforced with carbon fibers.

Down to the bone: Understanding how bone-dissolving cells are generated
Bone-dissolving cells called osteoclasts are derived from a type of immune cells called macrophages.

Bone particles in blood
A researcher at The University of Texas at Arlington has found that blood vessels within bone marrow may progressively convert into bone with advancing age.

'Bone in a dish' opens new window on cancer initiation, metastasis, bone healing
Researchers in Oregon have engineered a material that replicates human bone tissue with an unprecedented level of precision, from its microscopic crystal structure to its biological activity.

UCI team pioneers cancer treatment that targets bone metastases while sparing bone
University of California, Irvine researchers have developed and tested on mice a therapeutic treatment that uses engineered stem cells to target and kill cancer bone metastases while preserving the bone.

Replicating fetal bone growth process could help heal large bone defects
To treat large gaps in long bones, like the femur, which often can result in amputation, researched developed a process in a rodent model that partially recreates the bone growth process that occurs before birth.

3D-printed 'hyperelastic bone' may help generate new bone for skull reconstruction
Defects of the skull and facial bones can pose difficult challenges for plastic and reconstructive surgeons.

From foam to bone: Plant cellulose can pave the way for healthy bone implants
Researchers from the University of British Columbia and McMaster University have developed what could be the bone implant material of the future: an airy, foamlike substance from plant cellulose that can be injected into the body and provide scaffolding for the growth of new bone.

Read More: Bone News and Bone Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to