Nav: Home

Scientists identify interactions that stabilize a neurodegeneration-associated protein

July 01, 2019

PROVIDENCE, R.I. [Brown University] -- Most of the well-studied proteins in our bodies are like metal; some can change shape easily, like aluminum foil, and others are rigid, like steel beams, but they typically have a solid, well-defined structure. Many other essential proteins are more like water -- able to change phase from liquid to solid ice.

One of these important phase-changing proteins is called FUS. In healthy cells, FUS switches between floating diffusely and condensing into liquid droplets with other proteins to make, edit and deliver the blueprints for protein production. However, FUS also has a "solid" or aggregate phase that has been found in some people with severe cases of amyotrophic lateral sclerosis (ALS) and a type of dementia called frontotemporal dementia.

A team of researchers led by Nicolas Fawzi, an associate professor in the Department of Molecular Pharmacology, Physiology and Biotechnology at Brown University, used a combination of techniques to determine the atomic interactions that stabilize the liquid, yet "condensed" phase of FUS.

"What we want to understand is the atomic details of these interactions so that we know what kind of treatments would be important for ALS and other diseases," said Fawzi, a co-corresponding author on the paper who is also affiliated with the Carney Institute for Brain Science. "First we need to know the structural differences between the normal form and the disease form, so we know where to put in a wrench to stop it. We can't design a drug to bind to something when we don't know what it looks like."

The findings were published on Monday, July 1, in the journal Nature Structural and Molecular Biology.

Fawzi said you can think of the condensed liquid droplets FUS can form within cells as somewhat like the condensation that forms on a cold glass on a humid day. Both the water droplets and the humid air contain water molecules, but they are in distinct phases.

In addition to its implication in ALS -- commonly called Lou Gehrig's disease -- the disordered region of FUS is known to be associated with some types of cancer including Ewing's sarcoma, Fawzi said. In fact, the acronym FUS stands for FUsed in Sarcoma.

Using a combination of nuclear magnetic resonance (NMR) spectroscopy, Raman spectroscopy and computational modeling, Fawzi's team including Brown doctoral student Anastasia Murthy, the lead author on the study, found that the interactions between a disordered region of FUS in the condensed liquid droplets are quite varied and dynamic, he said. FUS does not form any traditional structural elements. However, multiple atomic interactions -- including those formed by specific amino acids within the protein, namely glutamine and tyrosine -- maintain the condensed yet disordered nature of FUS.

The knowledge of these molecular interactions -- which are distinct from the interactions in the neurodegeneration-associated aggregate phase -- might someday be used to guide the development of therapeutics that hinder disease-associated aggregation or support the normal condensed phase interactions.

Additionally, the combination of techniques Fawzi's team used to uncover FUS's atomic interactions could be used by other scientists studying intrinsically disordered proteins that also form liquid or solid condensed forms, such as Huntington's, Parkinson's, prion diseases and Type II diabetes in addition to ALS.

"We did these NMR experiments in a new way that allowed us to explicitly look at which atoms in one protein are interacting with atoms in another FUS protein," Fawzi said. "I expect that people will start doing experiments like this because it provides more assurance and detail on the contacts between intrinsically disordered proteins. Disordered proteins do all kinds of important things, and we don't really know how they normally work. When they go wrong, we really don't know what's going on."

Fawzi plans to continue studying FUS. Specifically, he wants to study the entire protein, not just the intrinsically disordered region that was the primary focus of this paper, in test tubes as well as in living cells. He also plans to apply this combination of techniques to continue studying the molecular interactions of other neurodegeneration-associated disordered proteins such as hnRNPA2 and TDP-43.
-end-
In addition to Fawzi and Murthy, other authors on the paper include Gregory Dignon, Gül Zerze and Jeetain Mittal from Lehigh University who conducted the computer modeling; and Yelena Kan and Sapun Parekh from University of Texas at Austin who led the Raman spectroscopy research.

The National Institutes of Health (grants R01GM118530 and T32GM007601), the National Science Foundation (grants 1845734 and 1644760), the Human Frontier Science Program (grant RGP0045/2018), the U.S. Department of Energy (grant DESC0013979) and Deutsche Forschungsgemeinschaft (grant PA-252611-1) supported the research.

Brown University

Related Amyotrophic Lateral Sclerosis Articles:

Researchers delay onset of amyotrophic lateral sclerosis (ALS) in laboratory models
Scientists have delayed the onset of amyotrophic lateral sclerosis (ALS) in laboratory models, leaving them cautiously optimistic that the result, combined with other clinical advances, points to a potential treatment for ALS in humans.
Emerging role of adenosine in brain disorders and amyotrophic lateral sclerosis
The role of adenosine in neurodegeneration and neuroregeneration has led to growing attention on adenosine receptors as potential drug targets in a range of brain disorders, including neuroregenerative therapy and treatment for amyotrophyic lateral sclerosis (ALS).
The gut may be involved in the development of multiple sclerosis
It is incompletely understood which factors in patients with multiple sclerosis act as a trigger for the immune system to attack the brain and spinal cord.
New clues about the origins of familial forms of Amyotrophic lateral sclerosis
A Brazilian study made important progress in understanding the accumulation of one of the proteins involved in amyotrophic lateral sclerosis (ALS).
Recrutement of a lateral root developmental pathway into root nodule formation of legumes
Peas and other legumes develop spherical or cylindrical structures -- called nodules -- in their roots to establish a mutually beneficial relationship with bacteria that convert atmospheric nitrogen into a useable nutrient for the legume plant.
Slowing the progression of multiple sclerosis
Over 77,000 Canadians are living with multiple sclerosis, a disease whose causes still remain unknown.
Columbia professor develops a detector that stops lateral phishing attacks
To alleviate this growing problem of email scams, Data Science Institute member Asaf Cidon helped develop a prototype of a machine-learning based detector that automatically detects and stops lateral phishing attacks.
Cochrane Review: Lateral flow urine lipoarabinomannan test to detect TB in people with HIV
TB causes more deaths in people living with HIV than any other disease, with more than 300,000 deaths in 2017.
Researchers perform thousands of mutations to understand amyotrophic lateral sclerosis
Researchers from IBEC and CRG in Barcelona use a technique called high-throughput mutagenesis to study Amyotrophic Lateral Sclerosis (ALS), with unexpected results.
How to improve multiple sclerosis therapy
Medications currently used to treat multiple sclerosis (MS) can merely reduce relapses during the initial relapsing-remitting phase.
More Amyotrophic Lateral Sclerosis News and Amyotrophic Lateral Sclerosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.