Nav: Home

Researchers discover genetic mutation behind serious skull disorder

July 01, 2019

CORVALLIS, Ore. - A collaboration led by scientists at Oregon State University, the University of Oxford in the United Kingdom and Erasmus University in The Netherlands has identified a new genetic mutation behind the premature fusing of the bony plates that make up the skull.

The findings are a key step toward preventing a serious cranial condition that affects roughly one child in 2,250, and also toward understanding how the protein the gene encodes works in the development and function of other organ systems such as skin, teeth and the immune system.

In the skull, when one or more of the fibrous joints, called skull sutures, between cranial bones close too soon - a condition known as craniosynostosis - the resulting early plate fusion disrupts proper growth of the skull and brain.

Pressure inside the cranium can lead to a variety of medical problems including impaired vision, respiration and mental function, as well as abnormal head shape. Males are affected at slightly higher rates, and most cases are termed "sporadic" - meaning they occur by chance.

"As an individual grows, sutures are supposed to close gradually, with complete fusion taking place in the third decade of life," said Oregon State researcher Mark Leid. "Proper suture formation, maintenance and ossification require an exquisitely choreographed balance - stem cells and their progeny need to proliferate and differentiate at just the right time."

Leid, professor and interim dean of the OSU College of Pharmacy, and scientists Stephen Twigg of Oxford and Irene Mathijssen of Erasmus University in Rotterdam performed whole-genome sequencing on a male craniosynostosis patient and found a mutation in a gene known as BCL11B.

Neither of the patient's parents had symptoms of craniosynostosis, a family history of the condition, or carried the mutation, which generated a single amino acid change in the BCL11B protein.

The international research group proved that the human patient's mutation was causative for craniosynostosis by utilizing a mouse model harboring the same mutation. Like the human patient, the genetically modified mouse exhibited craniosynostosis at birth.

"Our data demonstrate that the identified amino acid substitution caused craniosynostosis in the patient we studied," Leid said. "The mouse model that we created should be useful in dissecting the mechanisms behind the role of the BCL11B protein in keeping sutures open, as well as the role of the protein in the development and function of other organ systems."
-end-
Professor Theresa Filtz, staff scientist Walter Vogel and graduate students Elahe Esfandiari, Wisam Hussein Selman and Evan Carpenter of the Oregon State College of Pharmacy took part in this research, as did professor Urszula Iwaniec of the OSU College of Public Health and Human Sciences. In addition to Oregon State, Oxford and Erasmus, scientists at the University of Leicester in the UK were part of the collaboration.

Findings were published in Human Molecular Genetics.

Oregon State University

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...