Nav: Home

Study finds electronic cigarettes damage brain stem cells

July 01, 2019

RIVERSIDE, Calif. -- A research team at the University of California, Riverside, has found that electronic cigarettes, often targeted to youth and pregnant women, produce a stress response in neural stem cells, which are critical cells in the brain.

Present throughout life, stem cells become specialized cells with more specific functions, such as brain cells, blood cells, or bone. Far more sensitive to stress than the specialized cells they become, stem cells provide a model to study exposure to toxicants, such as cigarette smoke.

Electronic cigarettes, or ECs, are nicotine-delivery devices that aerosolize nicotine and flavor chemicals through heating. Researchers do not yet understand how the chemicals in ECs might affect neural stem cells, particularly their mitochondria -- organelles that serve as the cell's powerhouses and are critical in regulating cell health.

Using cultured mouse neural stem cells, the UC Riverside researchers identified the mechanism underlying EC-induced stem cell toxicity as "stress-induced mitochondrial hyperfusion," or SIMH.

"SIMH is a protective, survival response," said Prue Talbot, a professor in the Department of Molecular, Cell and Systems Biology who led the research. "Our data show that exposure of stem cells to e-liquids, aerosols, or nicotine produces a response that leads to SIMH."

The study, performed on Vuse, a leading EC brand, appears in iScience, an open-access journal from Cell Press.

"Although originally introduced as safer, ECs, such as Vuse and JUUL, are not harmless," said Atena Zahedi, the first author of the research paper who received her doctoral degree in bioengineering this year. "Even short-term exposure can stress cells in a manner that may lead, with chronic use, to cell death or disease. Our observations are likely to pertain to any product containing nicotine."

Zahedi, the recipient of a 2019-20 UC President's Postdoctoral Fellowship, explained that during SIMH, round punctate mitochondria fuse together to form long hyperfused networks in order to rescue each other -- making them less vulnerable to degradation.

"The high levels of nicotine in ECs lead to a nicotine flooding of special receptors in the neural stem cell membrane," Zahedi said. "Nicotine binds to these receptors, causing them to open up.  Calcium and other ions begin to enter the cell. Eventually, a calcium overload follows."

Zahedi explained that too much calcium in the mitochondria is harmful. The mitochondria then swell, changing their morphology and function. They can even rupture and leak molecules that lead to cell death.

"If the nicotine stress persists, SIMH collapses, the neural stem cells get damaged and could eventually die," Zahedi said. "If that happens, no more specialized cells -- astrocytes and neurons, for example -- can be produced from stem cells."

Zahedi added that damaged stem cell mitochondria could accelerate aging and lead to neurodegenerative diseases. Neural stem cells can get exposed to nicotine through the olfactory route, she explained. Users inhale the fumes, which can travel through the olfactory tracks to reach the brain.

Talbot and Zahedi stress that youth and pregnant women need to pay especially close attention to their results.

"Their brains are in a critical developmental stage," said Talbot, the director of the UCR Stem Cell Center. "Nicotine exposure during prenatal or adolescent development can affect the brain in multiple ways that may impair memory, learning, and cognition. Furthermore, addiction and dependence on nicotine in youth are pressing concerns. It's worth stressing that it is nicotine that is doing damage to neural stem cells and their mitochondria. We should be concerned about this, given that nicotine is now widely available in ECs and their refill fluids."
-end-
Talbot and Zahedi were joined in the research by UCR's Rattapol Phandthong, Angela Chaili,  Sara Leung, and Esther Omaiye. Zahedi will start postdoctoral research at UC Irvine in July.

The research was supported by grants from the Center for Tobacco Products of the Food and Drug Administration; and the National Institute on Drug Abuse and National Institute of Environmental Health Sciences of the National Institutes of Health.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment is more than 24,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email news@ucr.edu.

University of California - Riverside

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.