Nav: Home

Scientists track the source of the 'Uncanny Valley' in the brain

July 01, 2019

Scientists have identified mechanisms in the human brain that could help explain the phenomenon of the 'Uncanny Valley' - the unsettling feeling we get from robots and virtual agents that are too human-like. They have also shown that some people respond more adversely to human-like agents than others.

As technology improves, so too does our ability to create life-like artificial agents, such as robots and computer graphics - but this can be a double-edged sword.

"Resembling the human shape or behaviour can be both an advantage and a drawback," explains Professor Astrid Rosenthal-von der Pütten, Chair for Individual and Technology at RWTH Aachen University. "The likeability of an artificial agent increases the more human-like it becomes, but only up to a point: sometimes people seem not to like it when the robot or computer graphic becomes too human-like."

This phenomenon was first described in 1978 by robotics professor Masahiro Mori, who coined an expression in Japanese that went on to be translated as the 'Uncanny Valley'.

Now, in a series of experiments reported in the Journal of Neuroscience, neuroscientists and psychologists in the UK and Germany have identified mechanisms within the brain that they say help explain how this phenomenon occurs - and may even suggest ways to help developers improve how people respond.

"For a neuroscientist, the 'Uncanny Valley' is an interesting phenomenon," explains Dr Fabian Grabenhorst, a Sir Henry Dale Fellow and Lecturer in the Department of Physiology, Development and Neuroscience at the University of Cambridge. "It implies a neural mechanism that first judges how close a given sensory input, such as the image of a robot, lies to the boundary of what we perceive as a human or non-human agent. This information would then be used by a separate valuation system to determine the agent's likeability."

To investigate these mechanisms, the researchers studied brain patterns in 21 healthy individuals during two different tests using functional magnetic resonance imaging (fMRI), which measures changes in blood flow within the brain as a proxy for how active different regions are.

In the first test, participants were shown a number of images that included humans, artificial humans, android robots, humanoid robots and mechanoid robots, and were asked to rate them in terms of likeability and human-likeness.

Then, in a second test, the participants were asked to decide which of these agents they would trust to select a personal gift for them, a gift that a human would like. Here, the researchers found that participants generally preferred gifts from humans or from the more human-like artificial agents - except those that were closest to the human/non-human boundary, in-keeping with the Uncanny Valley phenomenon.

By measuring brain activity during these tasks, the researchers were able to identify which brain regions were involved in creating the sense of the Uncanny Valley. They traced this back to brain circuits that are important in processing and evaluating social cues, such as facial expressions.

Some of the brain areas close to the visual cortex, which deciphers visual images, tracked how human-like the images were, by changing their activity the more human-like an artificial agent became - in a sense, creating a spectrum of 'human-likeness'.

Along the midline of the frontal lobe, where the left and right brain hemispheres meet, there is a wall of neural tissue known as the medial prefrontal cortex. In previous studies, the researchers have shown that this brain region contains a generic valuation system that judges all kinds of stimuli; for example, they showed previously that this brain area signals the reward value of pleasant high-fat milkshakes and also of social stimuli such as pleasant touch.

In the present study, two distinct parts of the medial prefrontal cortex were important for the Uncanny Valley. One part converted the human-likeness signal into a 'human detection' signal, with activity in this region over-emphasising the boundary between human and non-human stimuli - reacting most strongly to human agents and much less to artificial agents.

The second part, the ventromedial prefrontal cortex (VMPFC), integrated this signal with a likeability evaluation to produce a distinct activity pattern that closely matched the Uncanny Valley response.

"We were surprised to see that the ventromedial prefrontal cortex responded to artificial agents precisely in the manner predicted by the Uncanny Valley hypothesis, with stronger responses to more human-like agents but then showing a dip in activity close to the human/non-human boundary--the characteristic 'valley'," says Dr Grabenhorst.

The same brain areas were active when participants made decisions about whether to accept a gift from a robot by signalling the evaluations that guided participants' choices. One further region - the amygdala, which is responsible for emotional responses - was particularly active when participants rejected gifts from the human-like, but not human, artificial agents. The amygdala's 'rejection signal' was strongest in participants who were more likely to refuse gifts from artificial agents.

The results could have implications for the design of more likable artificial agents. Dr Grabenhorst explains: "We know that valuation signals in these brain regions can be changed through social experience. So, if you experience that an artificial agent makes the right choices for you - such as choosing the best gift - then your ventromedial prefrontal cortex might respond more favourably to this new social partner."

"This is the first study to show individual differences in the strength of the Uncanny Valley effect, meaning that some individuals react overly and others less sensitively to human-like artificial agents," says Professor Rosenthal-von der Pütten. "This means there is no one robot design that fits--or scares--all users. In my view, smart robot behaviour is of great importance, because users will abandon robots that do not prove to be smart and useful."
The research was funded by Wellcome and the German Academic Scholarship Foundation.


Rosenthal-von der Pütten, AM et al. Neural Mechanisms for Accepting and Rejecting Artificial Social Partners in the Uncanny Valley. Journal of Neuroscience; 1 July 2019; DOI: 10.1523/JNEUROSCI.2956-18.2019

University of Cambridge

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at