Nav: Home

Rutgers researchers identify the origins of metabolism

July 01, 2019

A Rutgers-led study sheds light on one of the most enduring mysteries of science: How did metabolism - the process by which life powers itself by converting energy from food into movement and growth - begin?

To answer that question, the researchers reverse-engineered a primordial protein and inserted it into a living bacterium, where it successfully powered the cell's metabolism, growth and reproduction, according to the study in Proceedings of the National Academy of Sciences.

"We are closer to understanding the inner workings of the ancient cell that was the ancestor of all life on earth - and, therefore, to understanding how life arose in the first place, and the pathways life might have taken on other worlds," said lead author Andrew Mutter, a post-doctoral associate at Rutgers University's Department of Marine and Coastal Sciences.

The discovery also has implications for the field of synthetic biology, which harnesses the metabolism of microbes to produce industrial chemicals; and bioelectronics, which seeks to apply cells' natural circuitry for energy storage and other functions.

The researchers looked at a class of proteins called ferredoxins, which support metabolism in bacteria, plants and animals by moving electricity through cells. These proteins have different, complex forms in today's living things, but researchers speculate they all arose from a much simpler protein that was present in the ancestor of all life.

Similar to the ways biologists compare modern birds and reptiles to draw conclusions about their shared ancestor, the researchers compared ferredoxin molecules that are present in living things and, using computer models, designed ancestral forms that may have existed at an earlier stage in the evolution of life.

That research led to their creation of a basic version of the protein - a simple ferredoxin that is able to conduct electricity within a cell and that, over eons of evolution, could have given rise to the many types that exist today.

Then, to prove their model of the ancient protein could actually support life, they inserted it into a living cell. They took the genome of E. coli bacteria, removed the gene it uses to create ferredoxin in nature, and spliced in a gene for their reverse-engineered protein. The modified E. coli colony survived and grew although more slowly than normal.

Study co-author Vikas Nanda, a professor at Rutgers Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, said the discovery's implications for synthetic biology and bioelectronics come from ferredoxins' role in the circuitry of life.

"These proteins channel electricity as part of a cell's internal circuitry. The ferredoxins that appear in modern life are complex - but we've created a stripped-down version that still supports life. Future experiments could build on this simple version for possible industrial applications," Nanda said.
-end-
The study, which included researchers at Rice University, was funded in part by a grant from the NASA Astrobiology Institute and funding from the Gordon and Betty Moore Foundation, and included members of Rutgers ENIGMA, a research group seeking to understand how proteins evolved to become the predominant catalysts of life on earth.

Rutgers University

Related Metabolism Articles:

New metabolism discovered in bacteria
Microbiologists at Goethe University Frankfurt have discovered how the bacterium Acetobacterium woodii uses hydrogen in a kind of cycle to conserve energy.
Protein controls fat metabolism
A protein in the cell envelope influences the rate of fatty acid uptake in cells.
A new model of metabolism draws from thermodynamics and 'omics'
Scientists at EPFL have developed an algorithm that can model biochemical reactions from metabolism down to RNA synthesis with unprecedented accuracy.
A new way to control microbial metabolism
To help optimize microbes' ability to produce useful compounds but also maintain their own growth, MIT chemical engineers have devised a way to induce bacteria to switch between different metabolic pathways at different times.
Parasite manipulates algal metabolism for its own benefit
Researchers from the Max Planck Institute for Chemical Ecology and the universities of Jena and Frankfurt show that a pathogenic fungus alters the metabolism of its host unicellular algae, for its own purposes: the small bioactive substances that are formed in the process benefit the fungi's own propagation while preventing the algae from proliferating.
Lack of sleep affects fat metabolism
A restricted-sleep schedule built to resemble an American work week made study participants feel less full after a fatty meal and altered their lipid metabolism.
Mastering metabolism for shark and ray survival
Understanding the internal energy flow -- including the metabolism -- of large ocean creatures like sharks and rays could be key to their survival in a changing climate, according to a new study.
Rutgers researchers identify the origins of metabolism
A Rutgers-led study sheds light on one of the most enduring mysteries of science: How did metabolism -- the process by which life powers itself by converting energy from food into movement and growth -- begin?
Challenging metabolism may help fight disease
New research by Swansea University academics has shown that harnessing metabolism at a cellular level may help to relieve or heal a range of disorders.
How obesity affects vitamin D metabolism
A new Journal of Bone and Mineral Research study confirms that vitamin D supplementation is less effective in the presence of obesity, and it uncovers a biological mechanism to explain this observation.
More Metabolism News and Metabolism Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.