Nav: Home

Stanford study shows how to improve production at wind farms

July 01, 2019

What's good for one is not always best for all.

Solitary wind turbines produce the most power when pointing directly into the wind. But when tightly packed lines of turbines face the wind on wind farms, wakes from upstream generators can interfere with those downstream. Like a speedboat slowed by choppy water from a boat in front, the wake from a wind turbine reduces the output of those behind it.

Pointing turbines slightly away from oncoming wind - called wake-steering - can reduce that interference and improve both the quantity and quality of power from wind farms, and probably lower operating costs, a new Stanford study shows.

"To meet global targets for renewable energy generation, we need to find ways to generate a lot more energy from existing wind farms," said John Dabiri, professor of civil and environmental engineering and of mechanical engineering and senior author of the paper. "The traditional focus has been on the performance of individual turbines in a wind farm, but we need to instead start thinking about the farm as a whole, and not just as the sum of its parts."

Turbine wakes can reduce the efficiency of downwind generators by more than 40 percent. Previously, researchers have used computer simulations to show that misaligning turbines from the prevailing winds could raise production of downstream turbines. However, showing this on a real wind farm has been hindered by challenges in finding a wind farm willing to halt normal operations for an experiment and in calculating best angles for the turbine - until now.

First, the Stanford group developed a faster way to calculate the optimal misalignment angles for turbines, which they described in a study, published July 1 in Proceedings of the National Academy of Sciences.

Then, they tested their calculations on a wind farm in Alberta, Canada in collaboration with operator TransAlta Renewables. The overall power output of the farm increased by up to 47 percent in low wind speeds - depending on the angle of the turbines - and by 7 to 13 percent in average wind speeds. Wake steering also reduced the ebbs and flows of power that are normally a challenge with wind power.

"Through wake steering, the front turbine produced less power as we expected," said mechanical engineering PhD student Michael Howland, lead author on the study. "But we found that because of decreased wake effects, the downstream turbines generated significantly more power."


Variable output by wind farms makes managing the grid more difficult in two important ways.

One is the need for backup power supplies, like natural gas-fired power plants and large, expensive batteries. In the new study, the power improvement at low wind speeds was particularly high because turbines typically stop spinning below a minimum speed, cutting production entirely and forcing grid managers to rely on backup power. In slow winds, wake-steering reduced the amount of time that speeds dropped below this minimum, the researchers found. Notably, the biggest gains were at night, when wind energy is typically most valuable as a complement to solar power.

The other is the need to match exactly the amount of electricity supplied and used in a region every moment to keep the grid reliable. Air turbulence from wakes can make wind farm production erratic minute by minute - a time period too short to fire up a gas generator. This makes matching supply and demand more challenging for system operators in the very short term. They have tools to do so, but the tools can be expensive. In the study, wake steering reduced the very short-term variability of power production by up to 72 percent.

Additionally, reducing variability can help wind farm owners lower their operating costs. Turbulence in wakes can strain turbine blades and raise repair costs. Although the experiment did not last long enough to prove that wake steering reduces turbine fatigue, the researchers suggested this would happen.

"The first question that a lot of operators ask us is how this will affect the long-term structural health of their turbines," Dabiri said. "We're working on pinpointing the exact effects, but so far we have seen that you can actually decrease mechanical fatigue through wake steering."

Modeling and long-term viability

To calculate the best angles of misalignment for this study, the researchers developed a new model based on historical data from the wind farm.

"Designing wind farms is typically a very data and computationally intensive task," said Sanjiva Lele, a professor of aeronautics and astronautics, and of mechanical engineering. "Instead, we established simplified mathematical representations that not only worked but also reduced the computational load by at least two orders of magnitude."

This faster computation could help wind farm operators use wake steering widely.

"Our model is essentially plug-and-play because it can use the site-specific data on wind farm performance," Howland said. "Different farm locations will be able to use the model and continuously adjust their turbine angles based on wind conditions."

Although the researchers were unable to measure a change in annual power production because of the limited 10-day duration of this field test, the next step, said Dabiri, is to run field tests for an entire year.

"If we can get to the point where we can deploy this strategy on a large-scale for long periods of time, we can potentially optimize aerodynamics, power production and even land-use for wind farms everywhere," said Dabiri.
Dabiri is also a senior fellow at the Precourt Institute for Energy and a member of Stanford Bio-X. Lele is also a member of Stanford Bio-X.

This research was supported by the National Science Foundation, a Stanford Graduate Fellowship and Stanford's TomKat Center for Sustainable Energy. Field tests were conducted in collaboration with TransAlta Corp.

Stanford University

Related Wind Farms Articles:

Scientists track porpoises to assess impact of offshore wind farms
A new study is the first in a series to understand how marine mammals like porpoises, whales, and dolphins may be impacted by the construction of wind farms off the coast of Maryland.
Hot weather not to blame for Salmonella on egg farms
New research conducted by the University of Adelaide shows there is no greater risk of Salmonella contamination in the production of free range eggs in Australia due to hot summer weather, compared with other seasons.
Wind farms play key role in cutting carbon emissions, study finds
Wind farms have made a significant impact in limiting carbon emissions from other sources of power generation in Great Britain, a study shows.
Bat fatalities at wind farms prove unpredictable
Costly ecological impact assessments (EcIAs) completed prior to the building of wind farms have failed to protect bats from fatal collisions with the spinning blades.
Increasing stocking rate may not lead to greater nitrogen leaching on dairy farms
It has been commonly accepted that more cows per pasture would lead to increased nitrogen leaching because of increased nitrogen excretion via urine; but, a new study discovered circumstances where a decline in leaching occurred with increased stocking rate, challenging assumptions about how best to reduce the environmental footprint of grazing systems.
Batfarm will enable livestock farmers to assess the environmental impact of their farms
As from now, the livestock sector has a piece of innovative software enabling farmers to make an accurate environmental assessment of their farms.
Gone with the wind: Argonne coating shows surprising potential to improve reliability in wind power
A group of researchers from the Argonne National Laboratory and the University of Akron discovered that a particular form of carbon coating not necessarily designed for wind turbines may indeed prove a boon to the wind industry -- a serendipitous finding that was recently highlighted in the journal Tribology International.
Farms have become a major air-pollution source
Emissions from farms outweigh all other human sources of fine-particulate air pollution in much of the United States, Europe, Russia and China, according to new research.
Farms have become a major air-pollution source
A new study says that emissions from farms outweigh all other human sources of fine-particulate air pollution in much of the United States, Europe, Russia and China.
Ground-nesting bees on farms lack food, grow smaller
According to a recent study, the size of a common ground-nesting bee -- an important crop pollinator -- has grown smaller in heavily farmed landscapes.

Related Wind Farms Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...