Tabletop quantum experiment could detect gravitational waves

July 01, 2020

Predicted by Einstein's general theory of relativity, gravitational waves are ripples in space-time generated by certain movements of massive objects. They are important to study because they allow us to detect events in the universe that would otherwise leave little or no observable light, like black hole collisions.

In 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo collaborations made the first direct observation of gravitational waves. The waves were emitted from a 1.3 billion-year-old collision between two supermassive black holes and were detected using 4 km long optical interferometers as the event caused ripples in the Earth's space-time.

Researchers from UCL, University of Groningen, and University of Warwick propose a detector based on quantum technology that is 4000 times smaller than the detectors currently in use and could detect mid-frequency gravitational waves.

The study, published today in New Journal of Physics, details how state-of-the-art quantum technologies and experimental techniques can be used to build a detector capable of measuring and comparing the strength of gravity in two locations at the same time.

It would work by using nano-scale diamond crystals weighing ?10?^(-17) kg. The crystals would be placed in a quantum spatial superposition using Stern-Gerlach interferometry. Spatial superposition is a quantum state where the crystals exist in two different places at the same time.

Quantum mechanics allows for an object, however big, to be spatially delocalised in two different places at once. Despite being counter-intuitive and in direct conflict with our everyday experience, the superposition principle of quantum mechanics has been experimentally verified using neutrons, electrons, ions and molecules.

Corresponding author Ryan Marshman (UCL Physics & Astronomy and UCLQ), said: "Quantum gravitational sensors already exist using the superposition principle. These sensors are used to measure Newtonian gravity and make for incredibly accurate measurement devices. The quantum masses used by current quantum gravitational sensors are much smaller such as atoms, but experimental work is progressing the new interferometry techniques needed to make our device work to study gravitational waves.

"We found that our detector could explore a different range of frequencies of gravitational waves compared to LIGO. These frequencies might only be available if scientists build large detectors in space with baselines that are hundreds of thousands of kilometres in size."

The team envision that their proposed smaller detector could be used to build a network of detectors that would be capable of picking out gravitational wave signals from background noise. This network would also be potentially useful giving precise information on the location of the objects that are creating the gravitational waves.

Co-author, Professor Sougato Bose (UCL Physics & Astronomy and UCLQ), said: "While the sensor we have proposed is ambitious in its scope, there does not appear to be any fundamental or insurmountable obstacle to its creation using current and near future technologies.

"All the technical elements to make this detector have been individually realised in different experiments around the world: the forces required, the quality of the vacuum required, the method to place the crystals in superposition. The difficulty will come in putting it all together and making sure the superposition stays intact."

The next step is for the team to collaborate with experimentalists to start building prototypes of the device. Importantly, the same class of detectors can also contribute to detecting whether gravity is a quantum force, as shown in recent work at UCL and elsewhere.

Ryan Marshman said: "Indeed our initial ambition was to develop the device to explore nonclassical gravity. But, since it would be a considerable effort to realise such a device, we thought it was really important to examine the efficacy of such a device also for measuring very weak classical gravity such as gravitational waves and found out that it is promising!"
The work was funded by the, Netherlands Organisation for Scientific Research, the Royal Society, and the Engineering and Physical Sciences Research council.

University College London

Related Gravitational Waves Articles from Brightsurf:

Weak equivalence principle violated in gravitational waves
New research published in EPJ C proves theoretically that the Weak Equivalence Principle can be violated by quantum particles in gravitational waves - the ripples in spacetime caused by colossal events such as merging black holes.

Remembrance of waves past: memory imprints motion on scattered waves
Now, it appears that between relativity and the classical (stationary) wave regime, there exists another regime of wave phenomena, where memory influences the scattering process.

New populations of black holes revealed by gravitational waves
The gravitational wave detectors LIGO and Virgo have just chalked up their biggest catch yet, a black hole 142 times the mass of the Sun, resulting from the merger of two ''lighter'' black holes.

Tabletop quantum experiment could detect gravitational waves
Tiny diamond crystals could be used as an incredibly sensitive and small gravitational detector capable of measuring gravitational waves, suggests new UCL-led research.

Gravitational waves could prove the existence of the quark-gluon plasma
According to modern particle physics, matter produced when neutron stars merge is so dense that it could exist in a state of dissolved elementary particles.

X-rays and gravitational waves will combine to illuminate massive black hole collisions
A new study by a group of researchers at the University of Birmingham has found that collisions of supermassive black holes may be simultaneously observable in both gravitational waves and X-rays at the beginning of the next decade.

Quantum expander for gravitational-wave observatories
Gravitational-wave detectors use ultra-stable laser light stored in optical cavities to achieve the high sensitivity for detecting gravitational-wave signals from merging binary black holes and neutron stars.

Gravitational lensing provides a new measurement of the expansion of the universe
Amid ongoing uncertainty around the value of the Hubble Constant, uncertainty largely created by issues around measuring distances to objects in the galaxy, scientists who used a new distance technique have derived a different Hubble value, one 'somewhat higher than the standard value,' as Tamara Davis describes it in a related Perspective.

Gravitational waves leave a detectable mark, physicists say
New research shows that gravitational waves leave behind plenty of 'memories' that could help detect them even after they've passed.

DIY gravitational waves with 'BlackHoles@Home'
Researchers hoping to better interpret data from the detection of gravitational waves generated by the collision of binary black holes are turning to the public for help.

Read More: Gravitational Waves News and Gravitational Waves Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to