Self-assembled nano-capsules resemble bacterial cell walls

July 02, 2000

CHAMPAIGN, Ill. -- By manipulating simple and nonspecific interactions, researchers have discovered a way to make chemicals spontaneously self-assemble into ribbon-like tubules that resemble bacterial cell walls. The micrometer-sized tubules have potential applications in drug delivery systems and as templates for the synthesis of inorganic nanostructured materials.

"The 'artificial bacteria' consist of the biopolymer actin attached to charged lipid membranes," said Gerard Wong, a professor of materials science and of physics at the University of Illinois. Wong was the lead author of a paper published in the June 16 issue of the journal Science that described the assembly process. "The resulting actin-membrane capsules are fairly rigid and quite stable," he said.

Actin is a protein that provides the structural framework in eukaryotic cells and forms the molecular basis for biological functions as diverse as hearing, muscle contraction and cell division. When mixed with special liposomes, the researchers found, actin immediately undergoes a hierarchical self-assembly process that results in the formation of nano-scale tubular capsules.

"The composite membrane is organized into three layers," Wong said. "A middle lipid layer, similar to the plasma membrane that surrounds most cells, is sandwiched between two layers of actin filaments. The filaments first arrange themselves into two-dimensional parallel arrays on both sides of the lipid layer, and then they spontaneously wrap into tubules."

The spaces between the layers are filled with water and could be used for a variety of applications, including the packaging of certain drugs that would be slowly released to the body. The nano-capsules also could be used as miniature templates in novel, inorganic nanofabrication techniques.

While the structures have no real analog in nature, this type of spontaneous organization is reminiscent of multi-layered bacterial cell walls, Wong said. The protein-membrane interactions in living cell walls, however, exist far from equilibrium and require the hydrolysis of ATP (adenosine triphosphate) -- the biological energy storage molecule -- to maintain their shape and structure.

"And that's a crucial difference," Wong said. "Our actin-membrane capsules are in equilibrium and do not require energy to remain stable."
The work was performed while Wong was a postdoctoral associate at the University of California at Santa Barbara. Wong's collaborators in the study were materials science professor Cyrus Safinya, staff scientist Youli Li and graduate student Alison Lin at the University of California at Santa Barbara, and physiology professor Paul Janmey (now at the University of Pennsylvania) and postdoctoral researcher Jay Tang at Harvard University.

Funding was provided by the National Institutes of Health, the National Science Foundation and the University of California Biotechnology Research and Education Program.

University of Illinois at Urbana-Champaign

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to