Study shows quantum dots can penetrate skin through minor abrasions

July 02, 2008

Researchers at North Carolina State University have found that quantum dot nanoparticles can penetrate the skin if there is an abrasion, providing insight into potential workplace concerns for healthcare workers or individuals involved in the manufacturing of quantum dots or doing research on potential biomedical applications of the tiny nanoparticles.

While the study shows that quantum dots of different sizes, shapes and surface coatings do not penetrate rat skin unless there is an abrasion, it shows that even minor cuts or scratches could potentially allow these nanoparticles to penetrate deep into the viable dermal layer - or living part of the skin - and potentially reach the bloodstream.

Dr. Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State's College of Veterinary Medicine, tested the ability of the quantum dots to penetrate rat skin at 8 and 24 hour intervals. The experiment evaluated rat skin in various stages of distress - including healthy skin, skin that had been stripped using adhesive tape and skin that had been abraded by a rough surface. The researchers also assessed whether flexing the skin affected the quantum dots' ability to penetrate into the dermal layer. Monteiro-Riviere co-authored the study with doctoral student Leshuai Zhang.

While the study indicates that acute - or short-term - dermal exposure to quantum dots does not pose a risk of penetration (unless there is an abrasion), Monteiro-Riviere notes "there is still uncertainty on long-term exposure." Monteiro-Riviere explains that the nanoparticles may be able to penetrate skin if there is prolonged, repeated exposure, but so far no studies have been conducted to date to examine that possibility. Quantum dots are fluorescent nanoparticles that may be used to improve biomedical imaging, drug delivery and diagnostic testing.

This finding is of importance to risk assessment for nanoscale materials because it indicates that skin barrier alterations - such as wounds, scrapes, or dermatitis conditions - could affect nanoparticle penetration and that skin is a potential route of exposure and should not be overlooked.

The study found that the quantum dots did not penetrate even after flexing the skin, and that the nanoparticles only penetrated deep into the dermal layer when the skin was abraded. Although quantum dots are incredibly small, they are significantly larger than the fullerenes - or buckyballs - that Monteiro-Riviere showed in a 2007 study in Nano Letters can deeply and rapidly penetrate healthy skin when there is repetitive flexing of the skin.

Additionally, Monteiro-Riviere's laboratory previously showed quantum dots of different size, shape and surface coatings could penetrate into pig skin. The anatomical complexity of skin and species differences should be taken into consideration when selecting an animal model to study nanoparticle absorption/penetration. Human skin studies are also being conducted, but "it is important to investigate species differences and to determine an appropriate animal model to study nanoparticle penetration," Monteiro-Riviere says. "Not everyone can obtain fresh human skin for research."

Nanoparticles are generally defined as being smaller than 100 nanometers (thousands of times thinner than a human hair), and are expected to have widespread uses in medicine, consumer products and industrial processes.
-end-
The study, "Assessment of Quantum Dot Penetration into Intact, Tape-Stripped, Abraded and Flexed Rat Skin," was published in the June issue of Skin Pharmacology and Physiology.Note to Editors: The study abstract follows.

"Assessment of Quantum Dot Penetration into Intact, Tape-Stripped, Abraded and Flexed Rat Skin"
Authors: L.W. Zhang and N.A. Monteiro-Riviere, North Carolina State University
Published: May 2008, in Skin Pharmacology and Physiology.

Abstract: Quantum dot (QD) nanoparticles have received attention due to their fluorescent characteristics and potential use in medical applications. Skin penetration is one of the major routes of exposure for nanoparticles to gain access to a biological system. QD655 and QD565 coated with carboxylic acid were studied for 8 and 24 h in flow-through diffusion cells with flexed, tape-stripped and abraded rat skin to determine if these mechanical actions could perturb the barrier and affect penetration. Nonflexed skin did not show QD penetration 8 or 24 h. Flexed skin showed an increase in QD on the surface of the skin but no penetration at 8 and 24 h. Tape-stripped skin depicted QD only on the surface of the viable epidermis. QD655 penetrated into the viable dermal layers of abraded skin at both 8 and 24 h, while QD565 was present only at 24 h. QD were not detected in the perfusate by fluorescence and inductively coupled plasma-optical emission spectroscopy analysis for cadmium at any time point. These results indicate that the rat skin penetration of QD655 and QD565 is primarily limited to the uppermost stratum corneum layers of intact skin. Barrier perturbation by tape stripping did not cause penetration, but abrasion allowed QD to penetrate deeper into the dermal layers.

North Carolina State University

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.