Compounds found in green tea and wine may block formation of toxic metabolites

July 02, 2018

A new Tel Aviv University study suggests there is hope of treating certain inborn congenital metabolic diseases -- a hope found in green tea and in red wine.

Most people with inherited metabolic disorders are born with a defective gene that results in a critical enzyme deficiency. In the absence of a cure, many patients with inborn congenital metabolic disorders must adhere to a strict and demanding diet their entire lives. This new research finds that certain compounds found naturally in green tea and red wine may block the formation of toxic metabolites.

The research was led by Prof. Ehud Gazit of TAU's Faculty of Life Sciences and his doctoral student Shira Shaham-Niv. It was published in the Nature group journal Communications Chemistry.

The researchers considered two compounds: (1) epigallocatechin gallate, known as EGCG, found naturally in green tea, which has attracted attention within the medical community for its potential health benefits; and (2) tannic acid, found in red wine, which is known to prevent the formation of toxic amyloid structures that cause neurodegenerative disorders such as Alzheimer's and Parkinson's disease.

"In the case of inborn congenital metabolic diseases, the body does not produce a vital metabolic enzyme," Shaham-Niv said. "As a result, metabolites -- substances that are, among other things, the building blocks of DNA and proteins -- accumulate in the body. Such uncontrolled accumulation is toxic and can cause severe developmental and mental disorders.

"Our new study demonstrates once again the ability of nature to produce the best candidate of drugs to treat some of the worst human maladies."

Collectively, this group of disorders constitutes a significant portion of pediatric genetic diseases. The disease phenylketonuria (PKU), which produces the aggregation of the metabolite phenylalanine, is one common inborn metabolic disease. Infants with PKU must adhere to a strict diet free of phenylalanine for the rest of their lives. If they don't, they may face severe debilitating developmental problems.

"But this is an incredibly difficult task, since phenylalanine is found in most of the food products that we consume," Shaham-Niv said. "The avoidance of certain substances is the only way to prevent the debilitating long-term effects of inborn congenital metabolic disorders. We hope that our new approach will facilitate the development of new drugs to treat these disorders."

The new research is based on two previous studies conducted at Prof. Gazit's TAU laboratory. In the first study, phenylalanine was shown to be capable of self-assembly and of forming amyloid structures like those seen in Alzheimer's, Parkinson's and other neurodegenerative diseases. In the second study, by Shaham-Niv, other metabolites that accumulate in other inborn congenital metabolic diseases were also shown to undergo self-assembly processes and form toxic amyloid aggregates.

"Both studies led to an overhaul in the research community's understanding of metabolic diseases," Shaham-Niv said. "In our new study, we examined whether the molecules identified in past studies on Alzheimer's disease and other amyloid diseases, which are known to inhibit the formation of amyloid aggregates, could also help counteract the amyloid formation process of metabolites in metabolic diseases."

The new research focused on EGCG and tannic acid using test tubes and culture cell systems. The two substances were tested on three metabolites related to three innate metabolic diseases: adenine, cumulative tyrosine and phenylalanine. The results were promising. Both tannic acid and EGCG were effective in blocking the formation of toxic amyloid structures. The researchers also used computer simulations to verify the mechanism driving the compounds.

"We are entering a new era of understanding the role and the importance of metabolites in various diseases, including metabolic diseases, neurodegenerative diseases and even cancer," Shaham-Niv concluded. "The tools we have developed are ground-breaking and have tremendous potential to help a wide range of patients in the future."
-end-
American Friends of Tel Aviv University supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. TAU is ranked ninth in the world, and first in Israel, for producing start-up founders of billion-dollar companies, an achievement that surpassed several Ivy League universities. To date, 2,500 US patents have been filed by Tel Aviv University researchers -- ranking TAU #1 in Israel, #10 outside of the US and #43 in the world.

American Friends of Tel Aviv University

Related Neurodegenerative Diseases Articles from Brightsurf:

Bringing drugs to the brain with nanoparticles to treat neurodegenerative diseases
Researchers from the Institut national de la recherche scientifique (INRS) have shown that nanoparticles could be used to deliver drugs to the brain to treat neurodegenerative diseases.

First 'pathoconnectome' could point toward new treatments for neurodegenerative diseases
Scientists from the John A. Moran Eye Center at the University of Utah have achieved another first in the field of connectomics, which studies the synaptic connections between neurons.

Unlocking the mystery of tau for treatment of neurodegenerative diseases
A team of researchers from various collaborating universities and hospitals in Japan has uncovered crucial molecular details regarding the activity of the ''tau'' protein, promising to revolutionize the therapy of tau-induced neurodegenerative diseases.

Investigational drug stops toxic proteins tied to neurodegenerative diseases
An investigational drug that targets an instigator of the TDP-43 protein, a well-known hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), may reduce the protein's buildup and neurological decline associated with these disorders, suggests a pre-clinical study from researchers at Penn Medicine and Mayo Clinic.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases

New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.

Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.

Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.

Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.

Read More: Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.