Nav: Home

Artificial intelligence accurately predicts distribution of radioactive fallout

July 02, 2018

Tokyo - When a nuclear power plant accident occurs and radioactive material is released, it is vital to evacuate people in the vicinity as quickly as possible. However, it can be difficult to immediately predict where the emitted radioactivity will settle, making it impossible to prevent the exposure of large numbers of people.

A means of overcoming this difficulty has been presented in a new study reported in the journal Scientific Reports by a research team at The University of Tokyo Institute of Industrial Science. The team has created a computer program that can accurately predict where radioactive material that has been emitted will eventually land, over 30 hours in advance, using weather forecasts on the expected wind patterns. This tool enables evacuation plans and other health-protective measures to be implemented if another nuclear accident like in 2011 at the Fukushima Daiichi Nuclear Power Plant were to occur.

This latest study was prompted by the limitations of existing atmospheric modeling tools in the aftermath of the accident at Fukushima; tools considered so unreliable that they were not used for planning immediately after the disaster. In this context, the team created a system based on a form of artificial intelligence called machine learning, which can use data on previous weather patterns to predict the route that radioactive emissions are likely to take.

"Our new tool was first trained using years of weather-related data to predict where radioactivity would be distributed if it were released from a particular point," lead author Takao Yoshikane says. "In subsequent testing, it could predict the direction of dispersion with at least 85% accuracy, with this rising to 95% in winter when there are more predictable weather patterns."

"The fact that the accuracy of this approach did not decrease when predicting over 30 hours into the future is extremely important in disaster scenarios," Takao Yoshikane says. "This gives authorities time to arrange evacuation plans in the most badly affected areas, and to issue guidance to people in specific areas about avoiding eating fresh produce and taking potassium iodide, which can limit the absorption of ingested radioactive isotopes by the body."
-end-
The article, "Dispersion characteristics of radioactive materials estimated by wind patterns" was published in Scientific Reports at DOI:10.1038/s41598-018-27955-4.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Research Contact

Project Lecturer Takao Yoshikane
Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Tel: +81-471-366-965
E-mail: takao-y@iis.u-tokyo.ac.jp
URL: http://isotope.iis.u-tokyo.ac.jp/

Institute of Industrial Science, The University of Tokyo

Related Data Articles:

Discrimination, lack of diversity, & societal risks of data mining highlighted in big data
A special issue of Big Data presents a series of insightful articles that focus on Big Data and Social and Technical Trade-Offs.
Journal AAS publishes first data description paper: Data collection and sharing
AAS published its first data description paper on June 8, 2017.
73 percent of academics say access to research data helps them in their work; 34 percent do not publish their data
Combining results from bibliometric analyses, a global sample of researcher opinions and case-study interviews, a new report reveals that although the benefits of open research data are well known, in practice, confusion remains within the researcher community around when and how to share research data.
Designing new materials from 'small' data
A Northwestern and Los Alamos team developed a novel workflow combining machine learning and density functional theory calculations to create design guidelines for new materials that exhibit useful electronic properties, such as ferroelectricity and piezoelectricity.
Big data for the universe
Astronomers at Lomonosov Moscow State University in cooperation with their French colleagues and with the help of citizen scientists have released 'The Reference Catalog of galaxy SEDs,' which contains value-added information about 800,000 galaxies.
What to do with the data?
Rapid advances in computing constantly translate into new technologies in our everyday lives.
Why keep the raw data?
The increasingly popular subject of raw diffraction data deposition is examined in a Topical Review in IUCrJ.
Infrastructure data for everyone
How much electricity flows through the grid? When and where?
Finding patterns in corrupted data
A new 'robust' statistical method from MIT enables efficient model fitting with corrupted, high-dimensional data.
Big data for little creatures
A multi-disciplinary team of researchers at UC Riverside has received $3 million from the National Science Foundation Research Traineeship program to prepare the next generation of scientists and engineers who will learn how to exploit the power of big data to understand insects.

Related Data Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...