The spliceosome: The tailor that coordinates the 'snip and stitch' of genetic information

July 02, 2018

A sophisticated atomic-level computer simulation has allowed researchers of SISSA and the National Research centre (CNR-IOM - Institute for Materials Manufacturing) to shed light, for the first time, on the function of an important biological system called spliceosome, which works as a highly skilled tailor. The spliceosome is composed of 5 filaments of RNA and hundreds of proteins. Among these elements, the researchers have discovered that, in yeast, the Spp42 protein (corresponding to the human Prp8) coordinates the motion of different components which all together handle their tailoring tools to complete a minute cutting and sewing process. Thanks to this activity, the genetic information can be correctly transformed into a product of perfect manufacture and function, like proteins. This is a very delicate cellular process, whose defect is the underlying cause of more than 200 human diseases, including several types of cancer. Understanding the functioning of the spliceosome components may be of fundamental importance for treating several human diseases, for example for the development of new drugs able to regulate and modulate the activity of these "molecular tailors". The research has just been published in PNAS journal.

The "snip and stitch" of genetic information

To give life to its end product, a gene must first be copied by a specific apparatus. The copy, called messenger RNA or mRNA, is responsible for carrying the information contained in the DNA to the other cellular apparati, where it is transformed into proteins. «The messenger RNA, created as a copy of a gene, is in a premature form and must however undergo heavy restructuring» explains Lorenzo Casalino of SISSA and first author of this research. «In this premature form there are protein-coding regions (exons) and other non-coding regions (introns). To have a molecule able to transport information usefully, precisely and effectively, the latter must be eliminated by the spliceosome to transform it into mature mRNA». It is an extremely precise snip and stitch process, explains the researcher, because the minimum error can alter the information, with serious effects on cell activity and on the health of the entire organism. Proof of this is that a defect in the splicing, this is the name of this process, is connected, as we said earlier, to numerous diseases, including several types of leukaemia.

The spliceosome in the spotlight

«With a very long and truly complex computer simulation, working on a model originating from yeast, we have been able to shed light on the core of the spliceosome. We have simulated and analysed the movements of a specific and crucial set of protein/RNA complexes, understanding its role and establishing in particular that a protein called Spp42 (Prp8 in human) carries out a crucial role. Its action essentially induces the movement and hence regulate the function of all the other spliceosome components, namely an enormous machinery composed of more than 100 proteins and 5 filaments of RNA», clarifies Alessandra Magistrato of the Cnr-Iom (National Research Council-Institute of Material Manufacturing), head of the research. «It is the first time in the world that atomic-scale simulations are performed on this system, providing important information that contributes to filling the gaps of modern structural investigation techniques such as, in this case, cryo-electron microscopy».

Towards drug design

«Considering the crucial role played by this system, and its involvement in different diseases, there is strong interest in understanding its structure and action», explain Casalino and Magistrato. «We have studied this complex in yeast, for which we had the initial structural information. Ours is a first step, which has required years of work to understand the basic elements, which can be useful to rationalize also the function of the human spliceosome». A deep comprehension of the defective parts of the mechanism in case of disease may allow researchers to develop drugs that can regulate the spliceosome function as effective therapies. The researchers conclude «We are heading in that direction. Much remains to be done, but the road is fascinating and promising».

Scuola Internazionale Superiore di Studi Avanzati

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to