Climate change is making night-shining clouds more visible

July 02, 2018

WASHINGTON -- Increased water vapor in Earth's atmosphere due to human activities is making shimmering high-altitude clouds more visible, a new study finds. The results suggest these strange but increasingly common clouds seen only on summer nights are an indicator of human-caused climate change, according to the study's authors.

Noctilucent, or night-shining, clouds are the highest clouds in Earth's atmosphere. They form in the middle atmosphere, or mesosphere, roughly 80 kilometers (50 miles) above Earth's surface. The clouds form when water vapor freezes around specks of dust from incoming meteors. Watch a video about noctilucent clouds here.

Humans first observed noctilucent clouds in 1885, after the eruption of Krakatoa volcano in Indonesia spewed massive amounts of water vapor in the air. Sightings of the clouds became more common during the 20th century, and in the 1990s scientists began to wonder whether climate change was making them more visible.

In a new study, researchers used satellite observations and climate models to simulate how the effects of increased greenhouse gases from burning fossil fuels have contributed to noctilucent cloud formation over the past 150 years. Extracting and burning fossil fuels delivers carbon dioxide, methane and water vapor into the atmosphere, all of which are greenhouse gases.

The study's results suggest methane emissions have increased water vapor concentrations in the mesosphere by about 40 percent since the late 1800s, which has more than doubled the amount of ice that forms in the mesosphere. They conclude human activities are the main reason why noctilucent clouds are significantly more visible now than they were 150 years ago.

"We speculate that the clouds have always been there, but the chance to see one was very, very poor, in historical times," said Franz-Josef Lübken, an atmospheric scientist at the Leibniz Institute of Atmospheric Physics in Kühlungsborn, Germany and lead author of the new study in Geophysical Research Letters, a journal of the American Geophysical Union.

The results suggest noctilucent clouds are a sign that human-caused climate change is affecting the middle atmosphere, according to the authors. Whether thicker, more visible noctilucent clouds could influence Earth's climate themselves is the subject of future research, Lübken said.

"Our methane emissions are impacting the atmosphere beyond just temperature change and chemical composition," said Ilissa Seroka, an atmospheric scientist at the Environmental Defense Fund in Washington, D.C. who was not connected to the new study. "We now detect a distinct response in clouds."

Studying cloud formation over time

Conditions must be just right for noctilucent clouds to be visible. The clouds can only form at mid to high latitudes in the summertime, when mesospheric temperatures are cold enough for ice crystals to form. And they're only visible at dawn and dusk, when the Sun illuminates them from below the horizon.

Humans have injected massive amounts of greenhouse gases into the atmosphere by burning fossil fuels since the start of the industrial period 150 years ago. Researchers have wondered what effect, if any, this has had on the middle atmosphere and the formation of noctilucent clouds.

In the new study, Lübken and colleagues ran computer simulations to model the Northern Hemisphere's atmosphere and noctilucent clouds from 1871 to 2008. They wanted to simulate the effects of increased greenhouse gases, including water vapor, on noctilucent cloud formation over this time period.

The researchers found the presence of noctilucent clouds fluctuates from year to year and even from decade to decade, depending on atmospheric conditions and the solar cycle. But over the whole study period, the clouds have become significantly more visible.

The reasons for this increased visibility were surprising, according to Lübken. Carbon dioxide warms Earth's surface and the lower part of the atmosphere, but actually cools the middle atmosphere where noctilucent clouds form. In theory, this cooling effect should make noctilucent clouds form more readily.

But the study's results showed increasing carbon dioxide concentrations since the late 1800s have not made noctilucent clouds more visible. It seems counterintuitive, but when the middle atmosphere becomes colder, more ice particles form but they are smaller and therefore harder to see, Lübken explained.

"Keeping water vapor constant and making it just colder means that we would see less ice particles," he said.

On the contrary, the study found more water vapor in the middle atmosphere is making ice crystals larger and noctilucent clouds more visible. Water vapor in the middle atmosphere comes from two sources: water vapor from Earth's surface that is transported upward, and methane, a potent greenhouse gas that produces water vapor through chemical reactions in the middle atmosphere.

The study found the increase in atmospheric methane since the late 1800s has significantly increased the amount of water vapor in the middle atmosphere. This more than doubled the amount of mesospheric ice present in the mid latitudes from 1871 to 2008, according to the study.

People living in the mid to high latitudes now have a good chance of seeing noctilucent clouds several times each summer, Lübken said. In the 19th century, they were probably visible only once every several decades or so, he said.

"The result was rather surprising that, yes, on these time scales of 100 years, we would expect to see a big change in the visibility of clouds," Lübken said.
-end-
The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing 60,000 members in 137 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists

This paper is freely available for 30 days. Journalists and public information officers (PIOs) can download a PDF copy of the article by clicking on this link: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018GL077719

Multimedia accompanying this press release can be downloaded here: https://www.dropbox.com/sh/sz3mb0hkcd612of/AAD5TcUJMkF0HHufAKHL1y11a?dl=0

Journalists and PIOs may also request a copy of the final paper and multimedia by emailing Lauren Lipuma at llipuma@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Paper Title: "On the anthropogenic impact on long term evolution of noctilucent clouds"

Authors: Franz-Josef Lübken, Uwe Berger, Gerd Baumgarten: Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany.

Contact information for the authors: Franz-Josef Lübken: luebken@iap-kborn.de, +49 38293-68100.

American Geophysical Union

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.