Teamwork between cells fuels aggressive childhood brain tumor

July 02, 2018

Scientists have discovered that cancerous cells in an aggressive type of childhood brain tumour work together to infiltrate the brain, and this finding could ultimately lead to much needed new treatments, according to a new study* published in Nature Medicine today (Monday).

In the study, funded by Cancer Research UK with support from Abbie's Army and the DIPG Collaborative, the researchers investigated a type of childhood brain tumour called diffuse intrinsic pontine glioma (DIPG), shining a light on its most aggressive characteristic - its ability to leave the brain stem and send cancer cells to invade the rest of the brain.

DIPG is incredibly difficult to treat. Nearly all children with this type of cancer die within two years.

The researchers, led by a team at The Institute of Cancer Research, London, used donations of biopsy tissue and the brains of children who had died as a consequence of DIPG to look deep into the tumour and learn more about its cells.

They found that DIPGs are heterogenous, meaning they are made up of more than one type of cell. This enables the cells to 'work' together to leave the original tumour and travel into the brain. The scientists say this shows how complex the genetic make-up of the disease is and that a multi-pronged attack is likely to be necessary for treatment.

Professor Chris Jones, who led the study at The Institute of Cancer Research, London, said: "This is the first time we've observed this sort of interaction between different tumour cells in DIPG. The idea that the cells are working together to make the disease grow and become aggressive is new and surprising. Childhood cancers were thought to be very simple but this shows us that isn't always the case. Crucially, this gives us hope that we can develop new treatments.

"We desperately want to prevent more families going through the heartbreak of losing a child to this disease. Unfortunately, there is currently no cure for this illness. Children usually can't have surgery because of the tumour's location in the brain stem which controls functions such as breathing, heart rate, blood pressure, and swallowing. And other treatment options such as chemotherapy don't work because it's relatively difficult to get drugs into the brain stem and many DIPG tumours have an inbuilt resistance to chemotherapy."

The study also shows that even cells that exist in relatively small numbers in DIPG can exert a profound influence, by leading cells from the main tumour into the rest of the brain to stimulate tumour growth and spread.

In this study, researchers saw one type of cell leaving the original DIPG tumour site and migrating into the rest of the brain. This happens early in the evolution of the disease and is a cell type found in relatively small numbers. As it migrates, the cells release a chemical messenger called CXCL2, which has the effect of calling other cells from the tumour to follow it.

The next stage of research will see the researchers looking for treatments that target the most important subpopulations of cells in the tumour and/or interfere with the cooperation between cells.

Professor Richard Gilbertson, Director of the Cancer Research UK Cambridge Centre at the University of Cambridge, said: "This research begins to unravel the complex community of cells that make up DIPG. Through an elegant combination of molecular and cell biology techniques, this study provides a window into the heart of these tumours, allowing us to begin to decipher how their different cell populations interact with each other to promote the disease. It is exactly this sort of research that is needed if we are to beat this devastating cancer.

"Cancer Research UK recognises more must be done to tackle this devastating disease and has committed £25 million to brain tumour research over the next five years. Brain tumours have been identified as a cancer of unmet need; survival rates have not changed significantly in a generation."
-end-
For media enquiries contact Kathryn Ingham in the Cancer Research UK press office on 020 3469 5475 or, out of hours, on 07050 264 059.

Notes to editor:

*Jones et al. Functional diversity and cooperativity between subclonal populations of pediatric glioblastoma and diffuse intrinsic pontine glioma cells. Nature Medicine

**The family of a young boy who passed of DIPG is available upon request to tell their story.

Cancer Research UK

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.