Scientists propose solution to 'Gaia puzzle'

July 02, 2018

Scientists may have solved a long-standing puzzle over why conditions on Earth have remained stable enough for life to evolve over billions of years. The 'Gaia' hypothesis proposed that living things interacting with inorganic processes somehow keep the planet in a state where life can persist - despite threats such as a brightening sun, volcanoes and meteorite strikes.

The puzzle of how this might work has divided experts for decades, but a team led by scientists from the University of Exeter have proposed a solution. They say stability could come from "sequential selection" in which situations where life destabilises the environment tend to be short-lived and result in further change until a stable situation emerges, which then tends to persist.

Once this happens, the system has more time to acquire further traits that help to stabilise and maintain it - a process known as "selection by survival alone".

"We can now explain how the Earth has accumulated stabilising mechanisms over the past 3.5 billion years of life on the planet," said Professor Tim Lenton, of the University of Exeter.

"The central problem with the original Gaia hypothesis was that evolution via natural selection cannot explain how the whole planet came to have stabilising properties over geologic timescales."

"Instead, we show that at least two simpler mechanisms work together to give our planet with life self-stabilising properties."

He added: "Our findings can help explain how we came to be here to wonder about this question in the first place."

Professor Dave Wilkinson, of the University of Lincoln, who was also involved in the research, added: "I have been involved in trying to figure out how Gaia might work for over 20 years - finally it looks like a series of promising ideas are all coming together to provide the understanding I have been searching for."

Dr James Dyke, of the University of Southampton, also an author on the paper, said: "As well as being important for helping to estimate the probability of complex life elsewhere in the universe, the mechanisms we identify may prove crucial in understanding how our home planet may respond to drivers such as human-produced climate change and extinction events."

Creating transformative solutions to the global changes that humans are now causing is a key focus of the University of Exeter's new Global Systems Institute, directed by Professor Lenton, who said: "We can learn some lessons from Gaia on how to create a flourishing, sustainable, stable future for 9-11 billion people this century."

The Gaia hypothesis, first put forward by James Lovelock in the 1970s, was named after the deity who personified the Earth in Greek mythology.
-end-
The paper, published in the journal Trends in Ecology and Evolution, is entitled: "Selection for Gaia across multiple scales."

University of Exeter

Related Planet Articles from Brightsurf:

Astronomers discover planet that never was
What was thought to be an exoplanet in a nearby star system likely never existed in the first place, according to University of Arizona astronomers.

The ocean responds to a warming planet
The oceans help buffer the Earth from climate change by absorbing carbon dioxide and heat at the surface and transporting it to the deep ocean.

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.

Sub-Neptune sized planet validated with the habitable-zone planet finder
A signal originally detected by the Kepler spacecraft has been validated as an exoplanet using the Habitable-zone Planet Finder.

Feeding the world without wrecking the planet is possible
A study led by researchers from the Potsdam Institute for Climate Impact Research (PIK) now suggests a comprehensive solution package for feeding 10 billion people within our planet's environmental boundaries.

A planet that should not exist
Astronomers detected a giant planet orbiting a small star. The planet has much more mass than theoretical models predict.

A Goldilocks zone for planet size
Harvard University researchers described a new, lower size limit for planets to maintain surface liquid water for long periods of time, extending the so-called Habitable or 'Goldilocks'' Zone for small, low-gravity planets.

A second planet in the Beta Pictoris system
A team of astronomers led by Anne-Marie Lagrange, a CNRS researcher, has discovered a second giant planet in orbit around β Pictoris, a star that is relatively young (23 million years old) and close (63.4 light years), and surrounded by a disk of dust.

How plants are working hard for the planet
As the planet warms, plants are working to slow the effect of human-caused climate change -- and research published today in Trends in Plant Science has assessed how plants are responding to increasing carbon dioxide (CO2).

More support for Planet Nine
Mike Brown and Konstantin Batygin offer further clues about Planet Nine.

Read More: Planet News and Planet Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.