Algorithm identifies hypertensive patients who will benefit from intensive treatment

July 02, 2018

DALLAS - July 2, 2018 - Using data from large clinical trials, UT Southwestern researchers developed a way to predict which patients will benefit most from aggressive high blood pressure treatment.

The machine learning algorithm they devised combines three variables routinely collected during clinic visits and demonstrates how the emerging field of bioinformatics could transform patient care. Their work, available online now and publishing July 15 in the American Journal of Cardiology, describes a risk prediction model in which patient age, urinary albumin/creatinine ratio (UACR), and cardiovascular disease history successfully identified hypertensive patients for whom the benefits of intensive therapy outweigh the risks.

"Large randomized trials have provided inconsistent evidence regarding the benefit of intensive blood pressure lowering in hypertensive patients," said corresponding author Dr. Yang Xie, Director of the Quantitative Biomedical Research Center at UT Southwestern and of the University's Bioinformatics Core Facility. "To the best of our knowledge, this is the first study to identify a subgroup of patients who derive a higher net benefit from intensive blood pressure treatment."

Researchers used patient data from two National Institutes of Health-funded randomized controlled trials that tested intensive vs. standard blood pressure-lowering treatments - the Systolic Blood Pressure Intervention Trial (SPRINT) and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. The SPRINT trial included 9,361 nondiabetic hypertensive adults at an elevated risk of cardiovascular event, while ACCORD enrolled 10,251 patients with Type 2 diabetes.

"I think our algorithm can help us identify high-risk patients who will most likely benefit from intensive blood pressure reduction. Long-term intensive HBP drug therapy can reduce risk of heart failure and death, but it carries an increased risk of side effects," said co-author Dr. Wanpen Vongpatanasin, Professor of Internal Medicine and holder of the Norman and Audrey Kaplan Chair in Hypertension and the Fredric L. Coe Professorship in Nephrolithiasis Research in Mineral Metabolism.

The researchers' machine learning method determined three simple criteria to identify adults with high blood pressure who are at the highest risk for early major adverse cardiovascular events - such as cardiovascular death, heart attack, or stroke. Those criteria are: an age of 74 or older, a UACR of 34 or higher, and a history of clinical cardiovascular disease, such as heart disease, stroke, or heart failure. Patients who met one or more of the three criteria were predicted to be among a high-risk group who had a greater benefit from intensive blood pressure-lowering treatment. In contrast, the team found that patients younger than age 74 who had a UACR less than 34 and no history of cardiovascular disease may do equally as well with less intensive treatment.

"We feel that our findings have major clinical implications, since in addition to its predictive effects, the model generated here is simple and easy to implement in clinical practice without additional lab tests or computational tools," said Dr. Xie, who is also an Associate Professor of Clinical Sciences and Bioinformatics. "We hope that clinicians can someday use this algorithm to identify which patients should receive standard versus intensive treatment, and we hope to design a prospective clinical trial to further validate this algorithm."
-end-
Other UT Southwestern researchers involved in the study included Dr. Sandeep R. Das, Associate Professor of Internal Medicine; Dr. Rebecca Vigen, Assistant Professor of Internal Medicine; Dr. Tao Wang, Assistant Professor of Clinical Sciences and in the Center for the Genetics of Host Defense; Dr. Xin Luo, a data scientist; Dr. Rong Lu, a biostatistical consultant; Dr. Xiaowei Zhan, Assistant Professor of Clinical Sciences and in the Center for the Genetics of Host Defense; and Dr. Guanghua Xiao, Associate Professor of Clinical Sciences and Bioinformatics. Lead authors are Shidan Wang, a graduate student researcher, and Dr. Rohan Khera, a cardiology research fellow.

The study received support from the National Institutes of Health.

UT Southwestern Medical Center

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.