Nav: Home

Airless worms: A new hope against drug-resistant parasites

July 02, 2019

Over one billion people, including 880 million children, are infected with intestinal nematode worms, such as roundworms, hookworms and tapeworms, according to the World Health Organization. The infections are especially common in the developing world due to a lack of clean water and sanitation. If left untreated, they can leave a lasting mark on health and can also be lethal.

"We serendipitously discovered a new way to kill these parasites without harming the human host," says Andy Fraser, a professor of molecular genetics in the Donnelly Centre for Cellular and Biomolecular Research at the University of Toronto.

"These parasites pose a major global health burden and as their resistance to the available drugs continues to grow, so does the need to develop new therapies," he says.

Learn more about how Donnelly Centre teams are tackling neglected parasitic diseases.

The work was led by three graduate students, Samantha Del Borrello, Margot Lautens and Kathleen Dolan, and in collaboration with Amy Caudy, also a professor of molecular genetics in the Donnelly Centre. Their findings are described in a study published online in eLife, an open-access journal.

Fraser's team were testing their new method for unpicking how drugs affect the movement of a nonparasitic nematode, Caenorhabditis elegans, used as a stand-in for humans by researchers across the world. But a fluke finding prompted them to use this lab worm as a model for parasites instead.

The first drug they tried was cyanide because its effects are well known and they wanted to make sure the new system works. Cyanide blocks respiration and, as expected, when added to the lab dish containing the worms, it quickly paralyzed them. But to the researchers' surprise, the worms did not die. They resumed wriggling about as if nothing happened when the drug was washed out 24 hours later.

"Our worms were clearly doing something very different to everything we knew about respiration in other animals," says Del Borrello.

It turned out that the cyanide made the worms switch to another, unusual form of metabolism that makes energy without needing oxygen. This type of anaerobic metabolism has been known to occur in parasitic worms, allowing them to survive for long periods of time in the airless confines of the gut. Instead of oxygen, these parasites rewire their metabolism to produce energy using a molecule called rhodoquinone, or RQ.

Crucially, humans do not make RQ. That makes it a perfect target for drug development because the drugs will selectively kill the parasites without touching their human host.

Having tricked the lab worm into making energy like a parasite, the team could now apply all the genetic and molecular tools that have been developed for C. elegans to begin to work out how RQ is made. This has remained an outstanding question in a field that has seen little progress since RQ was first discovered 50 years ago in parasitic worms, for which such tools still do not exist.

But first, they needed oysters. Oysters, and other coastal mollusks, are among the few organisms beside the nematodes that produce RQ, probably as an adaptation to changing oxygen levels brought about by tide turns. Because RQ is not commercially available, Dolan had to extract it from the oysters she bought at the store and use it to optimize the mass spectrometry instrument that was later used to detect RQ in worms.

Then began the hunt for the genes responsible. They tested about 80 different mutant worm strains before finding one unable to make the molecule--and thus unable to survive in cyanide-- indicating that the mutated gene is required for RQ biosynthesis. The gene, called kynu-1 (pronounced as 'kai-noo 1') turned out to code for an enzyme that carries out an early step in RQ synthesis. This finding upended widely accepted ideas about how RQ is made. Most importantly, it also showed them clear ways to try to block RQ synthesis with drugs.

Del Borello is now testing thousands of compounds to find candidates that kill C.elegans when it's using RQ and which could be developed into new drugs against parasites.

"It's great that we figured out the science behind it, but what I am most excited about is finding drugs that target the RQ-dependent metabolism," she says. "We haven't reached the tipping point quite yet in terms of drug resistance, but we also don't have anything in the pipeline to help out when we do."

They already have several promising candidates, which will next be tested on animals, such as mice and sheep, before moving on to human trials. But even if a drug for livestock could be found, it would help save agricultural industry billions of dollars estimated to be lost from lower productivity that is caused by nematode infections in farm animals.

From testing new equipment to solving parasite metabolism, the way the project turned out took everyone by surprise. "This was not at all what we expected when we started out," says Lautens who credits the whole team for their success. "That we've been able to contribute to a field that has not seen much progress in many years is a testament to how hard everyone's been working on it with a lot of different perspectives."
-end-


University of Toronto

Related Parasites Articles:

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.
Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.
How malaria parasites become resistant to artemisinin antimalarial drugs
Malaria parasite mutations that inhibit the endocytoic appetite for a host's red blood cells may render them resistant to artemisinin, a widely used frontline antimalarial drug, according to a new study, which reveals a key molecular mechanism of drug resistance.
Study shows interactions between bacteria and parasites
A team at the Technical University of Munich (TUM) has completed the first study of the effects of a simultaneous infection with blood flukes (schistosomes) and the bacterium Helicobacter pylori -- a fairly common occurrence in some parts of the world.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
Airless worms: A new hope against drug-resistant parasites
Toronto scientists have uncovered a metabolic pathway that only exists in parasitic worms.
Parasites dampen beetle's fight or flight response
Beetles infected with parasitic worms put up less of a fight against simulated attacks from predators and rival males, according to a study by Felicia Ebot-Ojong, Andrew Davis and Elizabeth Jurado at the University of Georgia, USA, publishing May 22, 2019 in the open-access journal PLOS ONE.
Genome structure of malaria parasites linked to virulence
An international research team led by scientists at the University of California, Riverside, and the La Jolla Institute for Immunology has found that malaria parasite genomes are shaped by parasite-specific gene families, and that this genome organization strongly correlates with the parasite's virulence.
Parasites discovered in fossil fly pupae
Parasitic wasps existed as early as several million years ago.
Migratory animals carry more parasites, says study
Every year, billions of animals migrate across the globe, carrying parasites with them and encountering parasites through their travels.
More Parasites News and Parasites Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.