Glow reveals dangerous bacteria

July 02, 2019

Salmonella and listeria are among the most widely distributed and deadliest causes of foodborne infections. Their rapid and reliable detection on food and industrial food processing equipment is very important. In the journal Angewandte Chemie, scientists have introduced a new, ultrasensitive, chemiluminescence-based method for the direct detection of Salmonella and Listeria monocytogenes. Because of the simplicity and sensitivity, this test is significantly faster than conventional methods and can be carried out in the field.

It is estimated that about a million people per year are infected with salmonella infections in the USA alone. Of these, 380 die. Infections with listeria can also often be fatal. Current testing methods usually require the growth of bacterial cultures in a containment laboratory. A conclusive result based on standard diagnostic techniques generally takes two to six days.

Researchers working with Urs Spitz and Doron Shabat at the University of Tel Aviv, Nemis Technologies AG (Zurich, Switzerland), Zurich University of Applied Sciences, and Biosynth AG (Staad, Switzerland) have now introduced a new and efficient method for the ultrasensitive and significantly faster detection of Salmonella and Listeria. The method is based on chemiluminescence--the emission of light resulting from a chemical process. The simplicity of the tests allows for both enrichment of the bacteria and their detection in a test tube, with no further sample preparation, so no containment laboratory is required. The chemiluminescence probes have proven to be about 600 times more sensitive than conventional fluorescence probes.

The success of this technique is due to two specially developed probe molecules made by combining a luminescent substance (a phenoxy-dioxetane) with a "trigger". In this form the probe does not light up. The trigger is tailored to the bacteria to be detected: it is recognized by a specific enzyme produced by the pathogen--a special esterase in the case of Salmonella and a special phospholipase C for Listeria--that splits it from the luminescent part. This initiates a chemical reaction that causes the luminescent molecule to split off more pieces. The energy released by the reaction is emitted in the form of a very intense green glow. Tests with various bacteria demonstrated that the probe tailored to Listeria test only reacts to Listeria monocytogenes, not to other, non-pathogenic, strains of listeria. The intensity of the glow can be used to quantify the concentration of bacteria. The tests are so sensitive that, for example, a count of ten salmonella can be detected within six hours of enrichment. Even dried bacteria can be swabbed from surfaces and detected.

The researchers are confident that their new method can be used more broadly to develop specific chemiluminescence probes for other bacteria.
-end-
About the Author

Doron Shabat is a Professor of chemistry at the School of Chemistry at Tel Aviv University. His research is focused on bioorganic chemistry with particular interests in self-immolative molecular systems, long-wavelength fluorescent dyes, and chemiluminescence probes for in vitro and in vivo imaging. Since 2016, he is holding the Emerico Letay Chair of Chemical Processes.

http://www3.tau.ac.il/shabat/

Wiley

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.