Nav: Home

The secret of mushroom colors

July 02, 2019

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was shrouded in mystery. Researchers at the Technical University of Munich (TUM), in collaboration with the Bavarian Forest National Park, have now put together the first pieces of this puzzle.

In nature, specific colors and patterns normally serve a purpose: The eye-catching patterns of the fire salamander convey to its enemies that it is poisonous. Red cherries presumably attract birds that eat them and thus disperse their seed. Other animals such as chameleons use camouflage coloring to protect themselves from discovery by predators.

But climate also plays a role in coloration: Especially insects and reptiles tend to be darker in colder climates. Cold-blooded animals rely on the ambient temperature to regulate their body temperature. Dark coloration allows them to absorb heat faster. The same mechanism could also play a role in fungi, as the research team of Franz Krah, who wrote his doctoral thesis on the topic at TUM and Dr. Claus Bässler, mycologist at the TUM and coworker in the Bavarian Forest National Park suspect. Mushrooms might benefit from solar energy to improve their reproduction, as well.

Distribution of 3054 fungus species studied

To test their theory, the researchers combed through vast volumes of data. They investigated the distribution of 3054 species of fungi throughout Europe. In the process, they analyzed the lightness of their coloration and the prevailing climatic conditions in the respective habitats. The results showed a clear correlation: Fungal communities have darker mushrooms in cold climates. The scientists also accounted for seasonal changes. They discovered that fungal communities that decompose dead plant constituents are darker in spring and autumn than in summer.

"Of course, this is just the beginning," explains Krah. "It will take much more research before we develop a comprehensive understanding of mushroom colors." For example, further seasonal coloring effects cannot be detected in fungi that live in symbiosis with trees. "Here, other coloration functions, such as camouflage, also play a role." The researchers also need to study the degree to which dark coloration influences the reproductive rate of fungi.
-end-


Technical University of Munich (TUM)

Related Fungi Articles:

Impulse for research on fungi
For the first time, the cells of fungi can also be analysed using a relatively simple microscopic method.
Fungi as food source for plants
The number of plant species that extract organic nutrients from fungi could be much higher than previously assumed.
Bark beetles control pathogenic fungi
Pathogens can drive the evolution of social behaviour in insects.
Using fungi to search for medical drugs
An enormous library of products derived from more than 10,000 fungi could help us find new drugs.
Plants and fungi together could slow climate change
A new global assessment shows that human impacts have greatly reduced plant-fungus symbioses, which play a key role in sequestering carbon in soils.
Make fungi think they're starving to stop them having sex, say scientists
Tricking fungi into thinking they're starving could be the key to slowing down our evolutionary arms race with fungal pathogens, as hungry fungi don't want to have sex.
How plants react to fungi
Using special receptors, plants recognize when they are at risk of fungal infection.
Clostridium difficile infections may have a friend in fungi
The pathogen Clostridium difficile, which causes one of the most common hospital-acquired infections in the United States, may have accomplices that until now have gone largely unnoticed.
A 'crisper' method for gene editing in fungi
A team of researchers from Tokyo University of Science, Meiji University, and Tokyo University of Agriculture and Technology, led by Professor Takayuki Arazoe, has recently established a series of novel strategies to increase the efficiency of targeted gene disruption and new gene 'introduction' using the CRISPR/Cas9 system in the rice blast fungus Pyricularia (Magnaporthe) oryzae.
Are no-fun fungi keeping fertilizer from plants?
Research explores soil, fungi, phosphorus dynamics.
More Fungi News and Fungi Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.