Nav: Home

UH researcher reports the way sickle cells form may be key to stopping them

July 02, 2019

University of Houston associate professor of chemistry, Vassiliy Lubchenko, is reporting a new finding in Nature Communications on how sickle cells are formed. Lubchenko reports that droplets of liquid, enriched in hemoglobin, form clusters inside some red blood cells when two hemoglobin molecules form a bond - but only briefly, for one thousandth of a second or so.

The mystery of how the clusters form has long puzzled scientists. In patients with the inherited blood disorder known as sickle cell disease, or anemia, abnormal hemoglobin molecules line up into stiff filaments inside red blood cells, distorting their shapes and making it difficult for the blood cells to flow through narrow blood vessels. For the filaments to grow, the protein first congregates into tiny liquid droplets that are bigger than an atom, but so small their measurements are counted in increments between microscopic and macroscopic, called mesoscopic.

"Though relatively small in number, the mesoscopic clusters pack a punch," said Lubchenko. "They serve as essential nucleation, or growth, centers for things like sickle cell anemia fibers or protein crystals. The sickle cell fibers are the cause of a debilitating and painful disease, while making protein crystals remains to this day the most important tool for structural biologists."

Fibers don't grow just anywhere. Special, mesoscopically-sized droplets of the protein hemoglobin inside blood cells initiate their formation. "It turns out that inside your blood cell, there are little droplets of hemoglobin that are even more crowded with the protein than the rest of the cell," said Lubchenko. In an unexpected twist, these crowded areas are also expected to have more molecules bound together into 'dimers' or duos, the kind that last only a millisecond.

"The dimers are key to the formation of the mesoscopic clusters," reports Lubchenko, who suggests that one way to prevent sickle cell disease, which affects about 100,000 Americans, mostly African American and Hispanics, is to prevent the formation of the clusters so fibers are unable to grow out of them.

Same mechanism, different substances

Lubchenko suspects that the "dimer mechanism" applies to many other types of protein and soluble chemicals. The ability to make large numbers of tiny droplets of dense liquids or gels, that are all the same size, may have applications in nanotechnology and industrial synthesis of highly textured materials. Lubchenko and researcher Ho Yin Chan's work implies that deliberately inducing the formation of similar-sized clusters in liquids and in solids may provide a separate avenue for making uniformly-sized nanoparticles for industry.

He also speculates the formation of the clusters suggests "a tantalizing possibility that the precursors to living cells were not encased in membranes but, instead, were more like the so called membrane-less organelles," which Lubchenko thinks have much in common with the mesoscopic clusters.

In other words, his work touches on nothing less than the mystery of life.
-end-


University of Houston

Related Red Blood Cells Articles:

Natural resistance to malaria linked to variation in human red blood cell receptors
Researchers have discovered that protection from the most severe form of malaria is linked with natural variation in human red blood cell genes.
Researchers use modified insulin and red blood cells to regulate blood sugar
Researchers have developed a new technique that uses modified insulin and red blood cells to create a glucose-responsive 'smart' insulin delivery system.
Resilient red blood cells need fuel to adapt their shape to the environment
An international research team led by Osaka University built a novel 'Catch-Load-Launch' microfluidic device to monitor the resilience of red blood cells after being held in a narrow channel for various periods of time.
Major breakthrough in the manufacture of red blood cells
Researchers have generated the first immortalized cell lines which allow more efficient manufacture of red blood cells.
Cargo-carrying red blood cells alleviate autoimmune diseases in mice
Using red blood cells modified to carry disease-specific antigens, a team of scientists from Whitehead Institute and Boston Children's Hospital have prevented and alleviated two autoimmune diseases -- multiple sclerosis (MS) and type 1 diabetes --i n early stage mouse models.
More Red Blood Cells News and Red Blood Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...