Nav: Home

Gut microbes protect against flu virus infection in mice

July 02, 2019

Commensal gut microbes stimulate antiviral signals in non-immune lung cells to protect against the flu virus during early stages of infection, researchers report July 2nd in the journal Cell Reports. Enhanced baseline type I interferon (IFNα/β) signaling, which drives antiviral responses, reduced flu virus replication and weight loss in mice, but this protective effect was attenuated by antibiotic treatment.

"This study supports that taking antibiotics inappropriately not only promotes antibiotic resistance and wipes out the commensals in your gut that are useful and protective, but it may also render you more susceptible to viral infections," says senior study author Andreas Wack of the Francis Crick Institute in the UK. "In some countries, the livestock industry uses antibiotics a lot, prophylactically, so treated animals may become more susceptible to virus infections."

IFNα/β signalling plays a central role in the immune defense against viral infections. These pathways are fine-tuned to elicit antiviral protection while avoiding tissue damage due to inflammation. This trade-off is apparent in individuals with a genetic variant that results in high interferon production. They can mount enhanced immune responses against viruses, but the flip side is that they show signs of chronic auto-inflammation. It has not been clear exactly how IFNα/β signalling strikes the right balance, maximizing antiviral protection while minimizing excessive inflammation.

To address this question, Wack and his team used mice with enhanced baseline IFNα/β signalling due to a mutation that increases expression levels of the IFNα/β receptor. These mice were more resistant to influenza virus infection, with less weight loss, lower virus gene expression eight hours after infection, and reduced influenza virus replication two days later. Given that the viral load was controlled early, subsequent IFNα/β signalling and antiviral immune responses were never fully set in motion. The results suggest that regulating expression levels of the IFNα/β receptor could be key to fine-tuning IFNα/β signalling in the lungs.

But the protective effect of enhanced baseline IFNα/β signalling was reduced by two to four weeks of antibiotic treatment, which decreased IFNα/β signalling mainly in lung stromal cells -- non-immune cells that make up the structural tissue of organs. Conversely, fecal transplant reversed the antibiotic-induced susceptibility to influenza virus infection, suggesting a potential role for gut microbes.

Taken together, the results suggest that microbiota increase IFNα/β signalling in lung stromal cells, thereby enhancing protection against influenza virus infection. The new findings are consistent with those from previous studies showing that mice treated with oral antibiotics are more susceptible to viral infections, including the influenza A virus.

"This and previous studies demonstrate that microbiota-driven signals can act at multiple levels, inducing an antiviral state in non-immune cells to control infection early on, and enhancing the functionality of immune cells later in infection," says Wack.

Moving forward, the researchers plan to further investigate the exact origins and mechanisms underlying microbiota-driven antiviral resistance. "Previous research has suggested that the microbiota-driven signal in lung stromal cells could originate either from the gut or the lung," Wack says. "However, in the work presented here, the results of the fecal transplant experiments strongly suggest a gut involvement in this effect. We would love to understand the exact nature of the signal from the gut to the lung, and we are working on several hypotheses."
-end-
This study was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust. Additional support was provided by the MRC and Deutsche Forschungsgemeinschaft.

Cell Reports, Bradley and Finsterbusch et al.: "Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection" https://www.cell.com/cell-reports/fulltext/S2211-1247(19)30744-2

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Influenza Articles:

How proteins help influenza A bind and slice its way to cells
Researchers have provided new insight on how two proteins help influenza A virus particles fight their way to human cells.
Eating elderberries can help minimize influenza symptoms
Conducted by Professor Fariba Deghani, Dr. Golnoosh Torabian and Dr.
Mechanism to form influenza A virus discovered
A new study by Maria João Amorim's team, from the Gulbenkian Institute of Science, now reveals where the genomes of the influenza A virus are assembled inside infected cells.
Bat influenza viruses could infect humans
Bats don't only carry the deadly Ebola virus, but are also a reservoir for a new type of influenza virus.
New VaxArray publication on influenza neuraminidase quantification
InDevR Inc. announced publication of 'A Neuraminidase Potency Assay for Quantitative Assessment of Neuraminidase in Influenza Vaccines' in npj Vaccines.
Fighting mutant influenza
Another flu season is here, which means another chance for viruses to mutate.
Influenza vaccine delays are a problem for pediatricians
Uptake of influenza vaccine among children is low compared to other childhood vaccines, and missed opportunities for vaccination play an important role in this low uptake.
For a better influenza vaccine, focus on the neglected 'N'
In the April 5, 2018, issue of the journal Cell, researchers push for greater emphasis on the neglected viral-surface influenza protein neuraminidase.
Previous influenza virus exposures enhance susceptibility in another influenza pandemic
New data analysis suggests that people born at the time of the 1957 H2N2 or Asian Flu pandemic were at a higher risk of dying during the 2009 H1N1 Swine Flu pandemic as well as the resurgent H1N1 outbreak in 2013-2014.
Annual influenza vaccination does not prevent natural immunity
Earlier studies have suggested that having repeated annual influenza vaccination can prevent natural immunity to the virus, and potentially increase the susceptibility to influenza illness in the event of a pandemic, or when the vaccine does not 'match' the virus circulating in the community.
More Influenza News and Influenza Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab