Nav: Home

Proteins trapped in glass could yield new medicinal advances

July 02, 2019

Researchers at Chalmers University of Technology, Sweden, have developed a unique method for studying proteins which could open new doors for medicinal research. Through capturing proteins in a nano-capsule made of glass, the researchers have been able to create a unique model of proteins in natural environments. The results are published in the scientific journal, Small.

Proteins are target-seeking and carry out many different tasks necessary to cells' survival and functions. This makes them interesting for development of new medicines - particularly those proteins which sit in the cellular membrane, and govern which molecules are allowed to enter the cell and which are not. This means that understanding how such proteins work is an important challenge in order to develop more advanced medicines. But this is no easy feat - such proteins are highly complex. Today several different methods are used for imaging proteins, but no method offers a full solution to the challenge of studying individual membrane proteins in their natural environment.

A research group at Chalmers University of Technology, under the leadership of Martin Andersson at the Department of Chemistry and Chemical Engineering, has now successfully used Atom Probe Tomography to image and study proteins. Atom Probe Tomography has existed for a while, but has not previously been used in this way - but instead for investigating metals and other hard materials.

"It was in connection with a study of contact surfaces between the skeleton and implants when we discovered we could distinguish organic materials in the bone with this technique. That gave us the idea to develop the method further for proteins," says Martin Andersson.

The challenge lay in developing a method of keeping the proteins intact in their natural environment. The researchers successfully achieved this by encapsulating the protein in an extremely thin piece of glass, only around 50 nanometres in diameter (a nanometre is 1/millionth of a millimetre.) They then sliced off the outermost layer of the glass using an electrical field, freeing the protein atom by atom. The protein could then be recreated in 3D on a computer.

The results of the study have been verified through comparison with existing three-dimensional models of known proteins. In the future, the researchers will refine the method to improve the speed and accuracy.

The method is ground breaking in several ways. As well as modelling the three-dimensional structure, it simultaneously reveals the proteins' chemical composition.

"Our method offers a lot of good solutions and can be a strong complement to existing methods. It will be possible to study how proteins are built at an atomic level," says Martin Andersson.

With this method, potentially all proteins can be studied, something that is currently not possible. Today, only around one percent of membrane proteins have been successfully structurally analysed.

"With this method, we can study individual proteins, as opposed to current methods which study a large number of proteins and then create an average value," says Gustav Sundell, a researcher in Martin Andersson's research group.

With Atom Probe Tomography, information on an atom's mass can also be derived.

"Because we collect information on atoms' masses in our method, it means we can measure the weight. We can then, for example, create tests where medicinal molecules are combined with different isotopes - giving them different masses - which makes them distinguishable in a study. It should contribute to speeding up processes for constructing and testing new medicines," says Mats Hulander, a researcher in Martin Andersson's group.
-end-
Read the article, "Atom Probe Tomography for 3D Structural and Chemical Analysis of Individual Proteins" published in the journal Small.

More information on proteins' 3D structure

Proteins consist of long chains of amino acids which fold in different ways to activate different functions. To understand a protein's function, these 3D structures are investigated, but if you remove a protein from its membrane environment, it alters its shape. Therefore, it is useful to be able to image and analyse membrane proteins in their normal environment

For more information, contact:

Martin Andersson
Professor, Department of Chemistry and Chemical Engineering
Chalmers University of Technology, Sweden
martin.andersson@chalmers.se
+46 31 772 29 66

Gustav Sundell
Researcher, Department of Chemistry and Chemical Engineering
Chalmers University of Technology, Sweden
gustav.sundell@chalmers.se
+46 31 772 32 91

Mats Hulander
PhD, Department of Chemistry and Chemical Engineering
Chalmers University of Technology, Sweden
mats.hulander@chalmers.se
+46 31 772 29 56

Chalmers University of Technology

Related Proteins Articles:

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.