Nav: Home

A NEAT discovery about memory

July 02, 2019

BIRMINGHAM, Ala. - You could call this a neat discovery.

Researchers at the University of Alabama at Birmingham have found that a tissue-specific, non-coding RNA called NEAT1 has a major, previously undescribed role in memory formation. The findings are presented in a paper published in Science Signaling on July 2.

We have long known that DNA contains the instructions -- or the code -- that gives cells the genetic information they need to build and maintain an organism, much as the letters of the alphabet are the code used to make words. RNA is the messenger that transmits the code to individual cells in the form of proteins. However, there are also non-coding RNAs, which do carry instructions to a cell without coding for proteins and whose role -- if any -- has been poorly understood. Recently, science has come to understand that non-coding RNA may play a more important role than originally believed.

"NEAT1 is a tissue-specific, non-coding RNA found in the hippocampus region of the brain. This brain region is most associated with learning and memory," said Farah Lubin, Ph.D., associate professor in the Department of Neurobiology and primary investigator of the study. "While it has some association with cancer in other parts of the body, we have discovered that, in the hippocampus, NEAT1 appears to regulate memory formation."

Lubin says that, when NEAT1 is on, or active, we do not learn as well. But when presented with an outside learning experience, it turns off, allowing the brain to learn from the outside stimulus. She uses a car analogy. The engine might be running; but when the brakes are on, the car does not move. You have to take off the brakes and hit the gas to get the car to move.

"NEAT1 is the brake: When it is on, we aren't learning, at least not as much as we might with it off," Lubin said. "In a younger brain, when presented with stimulus that promotes learning, NEAT1 turns off. Since one of the hallmarks of aging is a decline in memory, we wondered if NEAT1 was implicated in that decline."

Lubin says one of the genes that NEAT1 acts upon is c-FOS, which is necessary for memory formation. In an aging brain, NEAT1 is on more than it is in a younger brain, interfering with the epigenetic regulation of c-FOS, which disrupts its memory functions.

Using siRNA techniques in a mouse model, Lubin's team was able to turn off NEAT1 in older mice. With NEAT1 off, the mice demonstrated normal abilities in learning and memory.

The next step was to change the level of NEAT1 in younger mice, using CRISPR/dCas9 gene-activation technology. Boosting the presence of NEAT1 in younger mice caused a decline in their ability to learn and remember.

"Turning NEAT1 off in older animals boosted memory, while increasing NEAT1 in younger animals diminished memory," Lubin said. "This gives us very strong evidence that NEAT1 and its effects on the epigenetic control of c-FOS are one of the keys to memory formation. These are significant findings, for not only did we find a novel epigenetic initiator and regulator, we identified a new role for the NEAT1 non-coding RNA. This sets the stage for more research into the potential roles played by other non-coding RNAs."

Lubin says further research should also examine the potential of using the same CRISPR/dCas9 technology to ultimately prevent NEAT1 overexpression in older humans to help boost memory formation. The goal is to find ways to enhance memory due to aging or conditions with memory deficits, such as Alzheimer's disease or other dementias.
-end-
The study was funded by a grant from the National Institute for Mental Health, one of the National Institutes of Health. Co-authors on the study were Anderson A. Butler, Department of Cell, Developmental and Integrated Biology; and Daniel R. Johnston and Simranjit Kaur from the UAB undergraduate neuroscience program.

About UAB

Known for its innovative and interdisciplinary approach to education at both the graduate and undergraduate levels, the University of Alabama at Birmingham is the state of Alabama's largest employer and an internationally renowned research university and academic medical center; its professional schools and specialty patient-care programs are consistently ranked among the nation's top 50. Learn more at http://www.uab.edu and http://www.uabmedicine.org. UAB: Powered by will.

University of Alabama at Birmingham

Related Memory Articles:

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
Seeing it both ways: Visual perspective in memory
Think of a memory from your childhood. Are you seeing the memory through your own eyes, or can you see yourself, while viewing that child as if you were an observer?
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
An immunological memory in the brain
Inflammatory reactions can change the brain's immune cells in the long term -- meaning that these cells have an 'immunological memory.' This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases.
Anxiety can help your memory
Anxiety can help people to remember things, a study from the University of Waterloo has found.
Pores with a memory
Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields.
Memory gene goes viral
Two independent teams of scientists from the University of Utah and the University of Massachusetts Medical School have discovered that a gene crucial for learning, called Arc, can send its genetic material from one neuron to another by employing a strategy commonly used by viruses.
Neurobiology: The chemistry of memory
Learning requires the chemical adaptation of individual synapses. Researchers have now revealed the impact of an RNA-binding protein that is intimately involved in this process on learning and memory formation and learning processes.
More Memory News and Memory Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.