A NEAT discovery about memory

July 02, 2019

BIRMINGHAM, Ala. - You could call this a neat discovery.

Researchers at the University of Alabama at Birmingham have found that a tissue-specific, non-coding RNA called NEAT1 has a major, previously undescribed role in memory formation. The findings are presented in a paper published in Science Signaling on July 2.

We have long known that DNA contains the instructions -- or the code -- that gives cells the genetic information they need to build and maintain an organism, much as the letters of the alphabet are the code used to make words. RNA is the messenger that transmits the code to individual cells in the form of proteins. However, there are also non-coding RNAs, which do carry instructions to a cell without coding for proteins and whose role -- if any -- has been poorly understood. Recently, science has come to understand that non-coding RNA may play a more important role than originally believed.

"NEAT1 is a tissue-specific, non-coding RNA found in the hippocampus region of the brain. This brain region is most associated with learning and memory," said Farah Lubin, Ph.D., associate professor in the Department of Neurobiology and primary investigator of the study. "While it has some association with cancer in other parts of the body, we have discovered that, in the hippocampus, NEAT1 appears to regulate memory formation."

Lubin says that, when NEAT1 is on, or active, we do not learn as well. But when presented with an outside learning experience, it turns off, allowing the brain to learn from the outside stimulus. She uses a car analogy. The engine might be running; but when the brakes are on, the car does not move. You have to take off the brakes and hit the gas to get the car to move.

"NEAT1 is the brake: When it is on, we aren't learning, at least not as much as we might with it off," Lubin said. "In a younger brain, when presented with stimulus that promotes learning, NEAT1 turns off. Since one of the hallmarks of aging is a decline in memory, we wondered if NEAT1 was implicated in that decline."

Lubin says one of the genes that NEAT1 acts upon is c-FOS, which is necessary for memory formation. In an aging brain, NEAT1 is on more than it is in a younger brain, interfering with the epigenetic regulation of c-FOS, which disrupts its memory functions.

Using siRNA techniques in a mouse model, Lubin's team was able to turn off NEAT1 in older mice. With NEAT1 off, the mice demonstrated normal abilities in learning and memory.

The next step was to change the level of NEAT1 in younger mice, using CRISPR/dCas9 gene-activation technology. Boosting the presence of NEAT1 in younger mice caused a decline in their ability to learn and remember.

"Turning NEAT1 off in older animals boosted memory, while increasing NEAT1 in younger animals diminished memory," Lubin said. "This gives us very strong evidence that NEAT1 and its effects on the epigenetic control of c-FOS are one of the keys to memory formation. These are significant findings, for not only did we find a novel epigenetic initiator and regulator, we identified a new role for the NEAT1 non-coding RNA. This sets the stage for more research into the potential roles played by other non-coding RNAs."

Lubin says further research should also examine the potential of using the same CRISPR/dCas9 technology to ultimately prevent NEAT1 overexpression in older humans to help boost memory formation. The goal is to find ways to enhance memory due to aging or conditions with memory deficits, such as Alzheimer's disease or other dementias.
-end-
The study was funded by a grant from the National Institute for Mental Health, one of the National Institutes of Health. Co-authors on the study were Anderson A. Butler, Department of Cell, Developmental and Integrated Biology; and Daniel R. Johnston and Simranjit Kaur from the UAB undergraduate neuroscience program.

About UAB

Known for its innovative and interdisciplinary approach to education at both the graduate and undergraduate levels, the University of Alabama at Birmingham is the state of Alabama's largest employer and an internationally renowned research university and academic medical center; its professional schools and specialty patient-care programs are consistently ranked among the nation's top 50. Learn more at http://www.uab.edu and http://www.uabmedicine.org. UAB: Powered by will.

University of Alabama at Birmingham

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.