Nav: Home

Unraveling the brain's reward circuits

July 02, 2019

To some, a chocolate cake may spark a shot of pleasure typically associated with illicit drugs. A new study by Penn biologists offers some insights into that link, revealing new information about how the brain responds to rewards such as food and drugs.

In the work, which appears this week online in the journal Neuron, a team led by Assistant Professor J. Nicholas Betley, postdoctoral researcher Amber L. Alhadeff, and graduate student Nitsan Goldstein of the School of Arts and Sciences shows that, in mice, consuming food turns down the activity of neurons that signal hunger in the brain via a different pathway than alcohol and drugs, which can likewise act as appetite suppressants. Yet the research also reveals that the circuits that trigger the pleasurable release of dopamine are interconnected with the activity of hunger neurons, suggesting that drugs and alcohol can hijack not only the brain's reward circuits but also those responsible for signaling hunger, serving to create a behavior that reinforces itself.

"Signals of reward, whether it's food or drugs, access the brain through different pathways," says Betley, senior author on the work. "But once they're in the brain, they engage an interconnected network between hypothalamic hunger neurons and reward neurons. It could be that drugs are reinforced not only by increasing a dopamine spike, but also by decreasing the activity of hunger neurons that make you feel bad."

With a greater understanding of these pathways, the researchers say their findings could inform the creation of more effective weight loss drugs or even addiction therapies.

Betley and colleagues' work has previously shown infusing any type of macronutrient (any calorie-containing food) into a mouse turned down the activity of AgRP neurons, which are responsible for the unpleasant feelings associated with hunger. The signal by which the stomach tells the brain it has consumed food travels along what is known as the vagal nerve.

Curious about whether alcohol, which is also caloric, could trigger the same effect, they found that it did so in mice, even when the vagal pathway was disrupted.

"If we cut that highway, highly caloric and rewarding foods like fat can no longer get that signal to the hunger neurons, but ethanol could," says Alhadeff.

The team next tried to do the same thing with cocaine, nicotine, and amphetamine, drugs that have been shown to have appetite suppressing activity, and found the same thing. It's the first time, the team says, that a non-nutrient has been shown to regulate AgRP neurons for a sustained period of time.

"What is exciting is that the results suggest there are pharmacological mechanisms out there that can be harnessed to reduce the activity of these neurons to alleviate hunger if someone was on a weight-loss diet," Alhadeff says.

Knowing that alcohol and drugs also trigger the release of dopamine, a neurotransmitter associated with a sensation of "reward" that is also implicated in addiction, the team observed that dopamine neuron activity increased in parallel to the decrease in AgRP neuron activity.

They went after that lead. Using a technique by which they could activate AgRP neurons without depriving an animal of food, the researchers explored how these hunger neurons influence dopamine signaling. In the absence of a food reward, they found little response in the dopamine neurons to activation of AgRP neurons. But when an animal with active AgRP was fed, the surge of dopamine was even higher than it would have been normally, without activated AgRP neurons. In other words, AgRP neurons made food more "rewarding" when the animals were hungry.

"We were surprised to find these AgRP neurons seemed to be signaling the dopamine neurons, but we couldn't detect that until the animal gets the reward," Goldstein says. "This suggested that either an indirect or modulatory circuit mediates the interaction between hunger and reward neurons in the brain."

The same thing happened when the animal received a drug, such as nicotine.

Moving ahead, the research team is investigating the differences between the reward signals that come from alcohol and drugs versus food and unpacking the connection they have revealed between the dopamine neurons and AgRP neurons. Using sophisticated new technology, they'll also be studying individual neurons to see if the effects they've observed are due to the activity of small subpopulations of neurons in the brain.

If they're successful at identifying a new, druggable pathway that could target these linked circuits, Betley says it would be welcome, as many currently available weight-loss drugs have unpleasant side effects such as nausea.

"It's hard to have somebody adhere to these drugs when they're feeling poorly," he says. "Our findings suggest there are multiple ways into the brain, and maybe by combining these strategies we can overcome these problems."
-end-
In addition to Betley, Alhadeff, and Goldstein, coauthors on the paper included Onyoo Park, Michelle L. Klima, and Alexandra Vargas, all members of the Betley lab at Penn.

J. Nicholas Betley is an assistant professor in the University of Pennsylvania School of Arts and Sciences' Department of Biology.

Amber L. Alhadeff is a postdoctoral research fellow in the Betley lab at the University of Pennsylvania.

Nitsan Goldstein is a graduate student in the Betley lab at the University of Pennsylvania.

The study was supported by the University of Pennsylvania School of Arts and Sciences, the American Heart Association, the American Diabetes Association, L'Oréal USA, the Obesity Society, and the National Institutes of Health (grants DK114104, DK112561, DK119574, and NS105607).

University of Pennsylvania

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...