Nav: Home

Foundational study explores role of diet in diabetes complications

July 02, 2019

Type 1 and type 2 diabetes affect the health of the inner lining of blood vessels. People with diabetes often experience complications in the eyes, heart, and other organs because of worsening blood vessel damage over the long term. One of the earliest signs of systemic inflammation in the blood vessels is the increased sticking of immune cells to the inner lining. As inflammation and microvascular damage continues in the light-sensitive tissue in the back of the eye -- the retina -- diabetic retinopathy can ensue. Diabetic retinopathy is a leading cause of severe vision loss and blindness. A pressing question in diabetes research is how elevated blood levels of sugar, cholesterol, and fat may contribute to blood vessel damage in relation to the diet. A new study by investigators from Brigham and Women's Hospital set out to determine which components of the Western diet -- one rich in sugar, cholesterol and fat -- may worsen diabetes complications. The team examined the effects of different dietary fats on the earliest molecular signs of retinal inflammation and damage in an experimental rodent model of type 1 diabetes. The results are published in The FASEB Journal.

"Solid information about the effects of nutrition on disease development or progression is a rarity, but foundational work in preclinical models can help set the stage for clinical implications," said corresponding author Ali Hafezi-Moghadam, MD, PhD, Director of the Molecular Biomarkers Nano-Imaging Laboratory at the Brigham and Associate Professor of Radiology at Harvard Medical School. "We want to understand who is at risk for diabetic retinopathy and what dietary steps can be taken to slow down disease progression, but to take those steps, we must first understand the effects and interplay of the various components of diet."

To do so, the team used an established rat model of type 1 diabetes, known as streptozotocin (STZ)-diabetic rats. This model is characterized by the inability to produce insulin and by elevated levels of sugar and fat in the blood. The research team generated high-fat diets with varying fatty acid compositions, moderate amounts of carbohydrates and no sugars to tease out the effects of specific dietary components on the diabetic vascular damage. The team fed these diets to the STZ-diabetic rats and then examined the accumulation of immune cells and other related readouts in the retinal blood vessels.

To examine the rat retina, the team previously developed a unique nanoprobe-based molecular imaging technique. The nanoprobes injected into the blood stream of the rats targeted specific molecules to which immune cells bind in the retina. Using laser-scanning confocal microscopy in live animals, the team produced images from the rats' retinas that visualized the accumulation of the nanoprobes. Hafezi-Moghadam likens the image of the brightly fluorescing nanoprobes in the retina to a "starry sky" at night, where "the number of stars tells us a whole lot about the condition of the retina."

The investigators found that neither high levels of saturated nor unsaturated fats increased retinal damage in this animal model, but that the combination of high levels of dietary cholesterol with specific saturated fatty acids that are abundant in the Western diet exacerbated the damage.

Elevated blood sugar (hyperglycemia) is a common symptom of type 1 and type 2 diabetes, however the diseases have different mechanisms. Because diabetes complications in patients are often clinically observed after long exposure to hyperglycemia, the study of the mechanisms of complications in animal models has traditionally put less emphasis on the manner in which the animals develop hyperglycemia. The lab introduced and is currently developing a realistic model of type 2 diabetes known as the Nile Grass Rat. In the future, the team will leverage this model and explore the contributions of other dietary components to vascular damage in type 2 diabetes.

"This work lays the foundation for further examination of the relationship between levels of fat in the blood, dietary fats, and the development of diabetes complications," said lead author Aliaa Barakat, PhD, a senior research scientist in the Molecular Biomarkers Nano-Imaging Laboratory at the Brigham. "Dietary carbohydrates and dietary fats have related and overlapping metabolic effects. Future experiments are warranted across a spectrum of hormonal changes characteristic of treated type 1 diabetes and treated and untreated type 2 diabetes. Subsequent work will also address mechanisms behind our findings involving the interaction between dietary sugar, cholesterol and saturated fatty acids."
Funding for this work was provided by the National Institutes of Health Impact Award (DK108238-01) and a JDRF Innovation award.

Paper cited: Barakat, A et al. "In contrast to Western diet, a plant-based, high-fat, low-sugar diet does not exacerbate retinal endothelial injury in streptozotocin-induced diabetes" The FASEB Journal DOI: 10.1096

Brigham and Women's Hospital

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.