Nav: Home

Can we feed 11 billion people while preventing the spread of infectious disease?

July 02, 2019

Within the next 80 years, the world's population is expected to top 11 billion, creating a rise in global food demand -- and presenting an unavoidable challenge to food production and distribution.

But a new article published in Nature Sustainability describes how the increase in population and the need to feed everyone will also, ultimately, give rise to human infectious disease, a situation the authors of the paper consider "two of the most formidable ecological and public health challenges of the 21st century."

The article, "Emerging human infectious disease and the links to global food production," is the first to draw connections between future population growth, agricultural development and infectious disease. 

"If we start exploring how increasing population and agriculture will affect human diseases, we can prepare for and mitigate these effects," said Jason Rohr, the Ludmilla F., Stephen J. and Robert T. Galla College Professor of Biological Sciences at the University of Notre Dame. "We need to anticipate some of the problems that may arise from an explosion of human population in the developing world."

According to the article, the fastest area of population growth expected by the year 2100 will occur in the developing world where disease control, surveillance and access to health care already face significant challenges. Currently, some estimates suggest that infectious disease accounts for 75 percent of deaths in developing countries in tropical regions. Each year in the United States, an estimated 48 million people suffer from foodborne infections, and foodborne illnesses have been linked to imported food from developing countries -- where sanitation and food safety is lacking or poorly enforced. Of that number, 128,000 are hospitalized and approximately 3,000 people each year die from foodborne infection.

As the world's population grows, the state of rural economies, use of agrochemicals and exploitation of natural resources, among other factors, are poised to further contribute to infectious disease outbreaks. "There are many modern examples where high human contact with farm animals or wild game is a likely cause of new human diseases that have become global pandemics," such as avian and swine flu, and mad cow disease, Rohr said.

Rohr, who also works as part of Notre Dame's Environmental Change Initiative and the Eck Institute for Global Health, studies human schistosomiasis, a worm infection transmitted from snails to humans in many tropical and subtropical parts of the world.

Through that research, he has seen firsthand how farming practices can affect disease because the snails thrive in waters with algae that grow prolifically in areas of agricultural runoff containing fertilizer. The primary predators of snails are prawns that migrate to estuaries to breed, but these estuaries often become unreachable because of dams installed to facilitate the irrigation of cropland.

"There is the perfect storm with schistosomiasis: Agriculture has decimated snail predators, irrigation ditches provide more snail habitat, and fertilizer use causes the proliferation of snail food," he noted. "Agriculture is important for nutrition that can be crucial for combating disease, but the right balance needs to be struck."

Rohr and collaborators offer several potential solutions to various challenges, such as improving hygiene to combat the overuse of antibiotics to promote the growth of farm animals. They also suggest that farmers add genetic variability to their crops and animals to reduce epidemics caused in part by monocultures and too many closely related animals living in close quarters.

Other solutions include enhancing education and health literacy, which has been documented as a major factor in reducing infections. The researchers also suggest investing in predictive mathematical models that integrate associations between agricultural practices and infectious diseases. These models could forecast risk across spatial scales to facilitate targeting preventive and mitigating measures.
-end-
Rohr conducted a portion of his research as a member of the faculty at University of South Florida. Coauthors include Christopher B. Barrett of Cornell University; David J. Civitello of Emory University; Meggan E. Craft and David Tilman of the University of Minnesota; Bryan Delius and Karena H. Nguyen of the University of South Florida; Giulio A. DeLeo and Susanne H. Sokolow of Stanford University; Peter J. Hudson of Pennsylvania State University; Nicolas Jouanard and Gilles Riveau of Espoir pou la Santé, Senegal; Richard S. Ostfeld of the Cary Institute of Ecosystem Studies; and Justin V. Remais of the University of California, Berkeley.

The research was funded by the National Science Foundation, National Institutes of Health, the U.S. Department of Agriculture, U.S. Environmental Protection Agency and the Bill and Melinda Gates Foundation, as well as grants from the University of California, University of Minnesota and the Stanford Global Development and Poverty Initiative.

University of Notre Dame

Related Infectious Disease Articles:

For patients with sepsis, an infectious disease expert may reduce the risk of death
When people with severe sepsis, an extreme overreaction by the body to a serious infection, come to the emergency room (ER), they require timely, expert care to prevent organ failure and even death.
Infectious disease in marine life linked to decades of ocean warming
New research shows that long-term changes in diseases in ocean species coincides with decades of widespread environmental change.
What makes some people more receptive to the idea of being vaccinated against infectious disease?
Fear, trust, and the likelihood of exposure are three leading factors that influence whether people are willing to be vaccinated against a virulent disease, according to a new study in the journal Heliyon, published by Elsevier.
Can we feed 11 billion people while preventing the spread of infectious disease?
A new article published in Nature Sustainability describes how the increase in population and the need to feed everyone will give rise to human infectious disease, a situation the authors of the paper consider 'two of the most formidable ecological and public health challenges of the 21st century.'
Climate change responsible for severe infectious disease in UK frogs
Climate change has already increased the spread and severity of a fatal disease caused by Ranavirus that infects common frogs (Rana temporaria) in the UK, according to research led by ZSL's Institute of Zoology, UCL and Queen Mary University of London published today in Global Change Biology.
New research framework may help better understand, predict infectious disease risks
University of South Florida-led research identifies individual hosts more or less likely to escalate outbreaks.
Researchers study bacterial immunity to understand infectious disease
Patients with cystic fibrosis are often infected by pseudomonas aeruginosa, a bacterium that infects the lungs and prevents breathing, often causing death.
National Academies target opioid abuse and infectious disease consequences
The National Academies of Sciences, Engineering, and Medicine today released proceedings of a March 12 workshop exploring the rise in infectious diseases accompanying opioid abuse, and possible strategies for reducing both epidemics.
Tonsil and adenoid removal associated with respiratory, allergic and infectious disease
Removing tonsils and adenoids in childhood increases the long-term risk of respiratory, allergic and infectious diseases, according to researchers who have examined -- for the first time -- the long-term effects of the operations.
Higher risk of infectious disease with both high and low cholesterol
The so-called good cholesterol, HDL, is associated with infectious disease, new research from the University of Copenhagen and Copenhagen University Hospital shows.
More Infectious Disease News and Infectious Disease Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.