Nav: Home

Mini-'Marsquakes' measured by InSight lander show effects of sun and wind

July 02, 2020

Fukuoka, Japan - Compared with our own planet Earth, Mars might seem like a "dead" planet, but even there, the wind blows and the ground moves. On Earth, we study the ambient seismic noise rippling mainly due to ocean activity to peek underground at the structure of the Earth's interior. Can we do the same on Mars without ocean?

According to a new study by researchers at Kyushu University's International Institute for Carbon-Neutral Energy Research, we're closer than ever to achieving this goal.

The study, published in Geophysical Research Letters, is based on data collected by NASA's InSight ("Interior Exploration using Seismic Investigations, Geodesy and Heat Transport") Martian lander, which landed on Mars on November 26, 2018. The InSight lander placed a seismometer on the surface of Mars and its readings are transmitted back to Earth. Continuous seismic records collected between February and June 2019 revealed the existence of several hundred "marsquakes." Most were much weaker than the quakes typically felt on Earth, although some reached a magnitude of almost 4.

The data from these "microtremors" were analyzed to determine their directions of propagation and directional intensity. Study co-author Tatsunori Ikeda explains, "Our polarization analysis revealed that seismic waves of different frequencies and types showed different patterns of variation over the course of the Martian day. The temporal variations in low-frequency P-waves were related to distant changes in wind and solar irradiation, and the low-frequency Rayleigh waves were related to the wind direction in the region near the lander. Higher-frequency ambient noises were dominated by vibration of the lander itself. Thus, microtremors of different types and frequencies likely have different sources, and some are probably influenced by geological structures."

These important differences between the dominant sources of different types of Martian microtremors may help in efforts to identify geological structures in Mars's interior, as we inferred the lithological boundary beneath the seismometer from high frequency ambient noise.

A single seismometer is not yet enough to reconstruct images of the planet's interior, however. On Earth, data from networks of multiple seismometers must be used together for that purpose. But this analysis of the InSight lander's seismic data is an important step toward achieving that goal on Mars. According to senior author Takeshi Tsuji, "These results demonstrate the feasibility of ambient noise methods on Mars. Future seismic network projects will enable us to model and monitor the planet's interior geological structure, and may even contribute to resource exploration on Mars, such as for buried ice."
-end-
The article, "Temporal variation and frequency dependence of seismic ambient noise on Mars from polarization analysis," was published in Geophysical Research Letters at DOI: doi.org/10.1029/2020GL087123.

Summary: Analysis of seismometer data from the InSight Martian lander revealed that different types and frequencies of ambient low-magnitude "microtremors" on Mars were associated with different sources, and some reflected daily variations in wind and solar irradiance, either in distant locations or near the lander. These findings will contribute to future projects seeking to model and monitor the Martian subsurface.

Kyushu University, I2CNER

Related Mars Articles:

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.
Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.
Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.
What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.
The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.
Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.
Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.
Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.
New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.
Why we won't get to Mars without teamwork
If humanity hopes to make it to Mars anytime soon, we need to understand not just technology, but the psychological dynamic of a small group of astronauts trapped in a confined space for months with no escape, according to a paper published in American Psychologist, the flagship journal of the American Psychological Association.
More Mars News and Mars Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.