A path to new nanofluidic devices applying spintronics technology

July 02, 2020

Researchers in the ERATO Saitoh Spin Quantum Rectification Project in the JST Strategic Basic Research Programs have elucidated the mechanism of the hydrodynamic power generation using spin currents(1) in micrometer-scale channels, finding that power generation efficiency improves drastically as the size of the flow is made smaller.

In a microchannel, the flow takes on a state referred to as laminar flow (2), where a micro-vortex-like liquid motion is distributed widely and smoothly throughout the channel. This leads to properties that are more suitable to miniaturization, and an increase in power generation efficiency. Group leader Mamoru Matsuo, et al., predicted the basic theory of fluid power generation using spin currents in 2017, and in this present study, the researchers experimentally demonstrate the fluid power generation phenomenon in the laminar flow region. As a result of experiments, they confirm that in the laminar flow region, energy conversion efficiency was increased by approximately 100,000 times.

The characteristics of the spin fluid power generation phenomenon in laminar flows that they elucidate in this research are that an electromotive force proportional to flow velocity can be obtained, and that conversion efficiency increases as flow size decreases. Also, whereas hydroelectric power generation (also known as fluid power generation) and magnetohydrodynamic power generation(3) require additional equipment such as turbines and coils, the phenomenon in the research requires almost no additional equipment, both inside and outside of the flow channel. Due to these characteristics, application to spintronics-based nanofluidic devices such as liquid metal flow cooling mechanisms in fast breeder reactors or semiconductor devices, as well as application to flowmeters that electrically measure micro-flows, can be hoped for.

(1) Spin current

The flow of spin angular momentum. For example, electrons have a charge (an electrical degree of freedom) and a spin angular momentum (a magnetic degree of freedom), where the flow of the former is called an electric current and the flow of the latter is called a spin current.

(2) Laminar flow

Flow within a channel is characterized primarily by flow-velocity, size and viscosity. In a low-velocity flow in a small-sized channel, viscosity dominates, and the fluid will flow regularly, and in layers, along the channel axis. This is referred to as laminar flow.

(3) Magnetohydrodynamic power generation

When a charged particle moves in a magnetic field, it is subjected to a force (Lorentz force) that is perpendicular to both the particle's direction of motion and the direction of the magnetic field. Particles with charges of the same polarity (positive or negative) are subjected to a force in the same direction, and move in one direction. As a result, electric charge accumulates at the destination of the particles' movement. Magnetohydrodynamic power generation is a power-generation method that uses the potential difference (electromotive force) generated from this accumulation.

This research was conducted under the ERATO Saitoh Spin Quantum Rectification Project of the JST Strategic Basic Research Programs. The members of the project are as follows: Research Director, Eiji Saitoh (Professor, University of Tokyo), Group leader, Sadamichi Maekawa (senior researcher at RIKEN), Group leader, Mamoru Matsuo (former deputy chief researcher at the Japan Atomic Energy Agency, currently associate professor at the University of Chinese Academy of Sciences), Vice Group leader, Hiroyuki Chudo (deputy chief researcher at the Japan Atomic Energy Agency), Research Supporter, Ryo Takahashi (former postdoctoral researcher at the Japan Atomic Energy Agency, currently assistant professor at Ochanomizu University).

Japan Science and Technology Agency

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.