Nav: Home

Science fiction becomes fact -- Teleportation helps to create live musical performance

July 02, 2020

Teleportation is most commonly the stuff of science fiction and, for many, would conjure up the immortal phrase "Beam me up Scotty".

However, a new study has described how its status in science fact could actually be employed as another, and perhaps unlikely, form of entertainment - live music.

Dr Alexis Kirke, Senior Research Fellow in the Interdisciplinary Centre for Computer Music Research at the University of Plymouth (UK), has for the first time shown that a human musician can communicate directly with a quantum computer via teleportation.

The result is a high-tech jamming session, through which a blend of live human and computer-generated sounds come together to create a unique performance piece.

Speaking about the study, published in the current issue of the Journal of New Music Research, Dr Kirke said: "The world is racing to build the first practical and powerful quantum computers, and whoever succeeds first will have a scientific and military advantage because of the extreme computing power of these machines. This research shows for the first time that this much-vaunted advantage can also be helpful in the world of making and performing music. No other work has shown this previously in the arts, and it demonstrates that quantum power is something everyone can appreciate and enjoy."

Quantum teleportation is the ability to instantaneously transmit quantum information over vast distances, with scientists having previously used it to send information from Earth to an orbiting satellite over 870 miles away.

In the current study, Dr Kirke describes how he used a system called MIq (Multi-Agent Interactive qgMuse), in which an IBM quantum computer executes a methodology called Grover's Algorithm.

Discovered by Lov Grover at Bell Labs in 1996, it was the second main quantum algorithm (after Shor's algorithm) and gave a huge advantage over traditional computing.

In this instance, it allows the dynamic solving of musical logical rules which, for example, could prevent dissonance or keep to ¾ instead of common time.

It is significantly faster than any classical computer algorithm, and Dr Kirke said that speed was essential because there is actually no way to transmit quantum information other than through teleportation.

The result was that when played the theme from Game of Thrones on the piano, the computer - a 14-qubit machine housed at IBM in Melbourne - rapidly generated accompanying music that was transmitted back in response.

Dr Kirke, who in 2016 staged the first ever duet between a live singer and a quantum supercomputer, said: "At the moment there are limits to how complex a real-time computer jamming system can be. The number of musical rules that a human improviser knows intuitively would simply take a computer too long to solve to real-time music. Shortcuts have been invented to speed up this process in rule-based AI music, but using the quantum computer speed-up has not be tried before. So while teleportation cannot move information faster than the speed of light, if remote collaborators want to connect up their quantum computers - which they are using to increase the speed of their musical AIs - it is 100% necessary. Quantum information simply cannot be transmitted using normal digital transmission systems."

University of Plymouth

Related Quantum Computers Articles:

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.
A new technique prevents errors in quantum computers
A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.
New method prevents quantum computers from crashing
Quantum information is fragile, which is why quantum computers must be able to correct errors.
Natural radiation can interfere with quantum computers
Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.
Sussex study enables predicting computational power of early quantum computers
University of Sussex quantum physicists have developed an algorithm which helps early quantum computers to perform calculations most efficiently
New model helps to describe defects and errors in quantum computers
A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.
The first intuitive programming language for quantum computers
Several technical advances have been achieved recently in the pursuit of powerful quantum computers.
Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.
Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.
Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.
More Quantum Computers News and Quantum Computers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.