Nav: Home

Typhoon changed earthquake patterns

July 02, 2020

The Earth's crust is under constant stress. Every now and then this stress is discharged in heavy earthquakes, mostly caused by the slow movement of Earth's crustal plates. There is, however, another influencing factor that has received little attention so far: intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly. This has now been shown for Taiwan by researchers from the GFZ German Research Centre for Geosciences in cooperation with international colleagues. They report on this in the journal Scientific Reports.

The island in the western Pacific Ocean is anyway one of the most tectonically active regions in the world, as the Philippine Sea Plate collides with the edge of the Asian continent. 11 years ago, Typhoon Morakot reached the coast of Taiwan. This tropical cyclone is considered the one of the worst in Taiwan's recorded history.

Within only three days in August 2009, three thousand litres of rain fell per square metre. As a comparison, Berlin and Brandenburg receive an average of around 550 liters per square meter in one year. The water masses caused catastrophic flooding and widespread landsliding. More than 600 people died and the immediate economic damage amounted to the equivalent of around 3 billion euros.

The international team led by Philippe Steer of the University of Rennes, France, evaluated the earthquakes following this erosion event statistically. They showed that there were significantly more small-magnitude and shallow earthquakes during the 2.5 years after typhoon Morakot than before, and that this change occurred only in the area showing extensive erosion. GFZ researcher and senior author Niels Hovius says: "We explain this change in seismicity by an increase in crustal stresses at shallow depth, less than 15 kilometres, in conjunction with surface erosion". The numerous landslides have moved enormous loads, rivers transported the material from the devastated regions. "The progressive removal of these loads changes the state of the stress in the upper part of the Earth's crust to such an extent that there are more earthquakes on thrust faults," explains Hovius.

So-called active mountain ranges, such as those found in Taiwan, are characterized by "thrust faults" in the underground, where one unit of rocks moves up and over another unit. The rock breaks when the stress becomes too great. Usually it is the continuous pressure of the moving and interlocking crustal plates that causes faults to move. The resulting earthquakes in turn often cause landslides and massively increased erosion. The work of the GFZ researchers and their colleagues now shows for the first time that the reverse is also possible: massive erosion influences seismicity - and does so in a geological instant. Niels Hovius: "Surface processes and tectonics are connected in the blink of an eye." The researcher continues: "Earthquakes are among the most dangerous and destructive natural hazards. Better understanding earthquake triggering by tectonics and by external processes is crucial for a more realistic assessment of earthquake hazards, especially in densely populated regions."
-end-
Original study: Steer, P. et al. "Earthquake statistics changed by typhoon-driven erosion"; Scientific Reports; DOI: 10.1038/s41598-020-67865-y

Link: http://www.nature.com/articles/s41598-020-67865-y

Scientific contact:

Prof. Dr. Niels Hovius
Head of Section Geomorphology
Tel:+49 331 288-28810
niels.hovius@gfz-potsdam.de

GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

Related Stress Articles:

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.
Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.
How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS
How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.
Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
More Stress News and Stress Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.