Nav: Home

New candidate for raw material synthesis through gene transfer

July 02, 2020

Cyanobacteria hardly need any nutrients and use the energy of sunlight. Bathers are familiar with these microorganisms - often incorrectly called "blue-green algae" - as they often occur in waters. A group of researchers at the Karlsruhe Institute of Technology (KIT) has discovered that the multicellular species Phormidium lacuna can be genetically modified by natural transformation and could thus produce substances such as ethanol or hydrogen. They present their results in the online scientific journal PLOS ONE (DOI: 10.1371/journal.pone. 0234440).

During transformation, a cell is genetically modified by adding genetic material (DNA). This process, which occurs frequently in nature, can be used to introduce specific DNA into a cell and endow it with a certain property. "Natural transformation means that DNA is taken up by cells without any further aids," says Professor Tilman Lamparter, professor at the Botanical Institute - General Botany research field at the KIT. The procedure is simple: It works without conjugation - the connection with another cell - and without electroperforation - which would make the cell wall permeable. Since natural transformation has so far only been successful in unicellular cyanobacteria, it was assumed that it was an exclusive feature of unicellular species. The findings of the KIT research group show that the natural competence to take up extracellular DNA occurs more frequently in cyanobacteria than previously thought. In the online scientific publication PLOS ONE (Public Library of Science), they report for the first time on gene transfer for the Phormidium lacuna genus and on the natural transformation of a multicellular, filamentous cyanobacterium.

Contribution to Bio-Economy: Replacing Fossil Resources

For natural transformation, the cells must be in a physiological state, known as natural competence, so that the recipient cell can actively transport DNA into the cytoplasm. The scientists took advantage of the natural transformation and integrated new genetic information into the genome of Phormidium lacuna. The multicellular cyanobacteria, which obtain their energy from sunlight, offer the advantage of forming a biofilm and of growing in a high cell density that can be quickly removed. KIT scientists isolated several strains of this filamentously growing species from the North Sea and the Mediterranean Sea and sequenced the genome of one strain.

The technique established by the researchers to modify multicellular cyanobacteria by introducing genetic information opens up a wide range of possibilities for basic research and possible applications. "With the help of natural transformation, we have already created numerous so-called knockout mutants, i.e. we succeeded in switching off certain genes and thus identified their function," says Lamparter. A possible future-oriented application would be to synthesize ethanol, hydrogen or lactate as well as other bioproducts in the cells and thus contribute to the bio-economy and to the change from an oil-based economy to a market economy based on sustainable resources. "Our vision is to use this technology to replace fossil resources," says the biologist.
-end-
Original publication:

Nies F, Mielke M, Pochert J, Lamparter T (2020) Natural transformation of the filamentous cyanobacterium Phormidium lacuna. PLoS ONE 15(6): e0234440. https://doi.org/10.1371/journal.pone.0234440

For further information, please contact: Margarete Lehné, Press Officer, Phone: +49 721 608-21150, E-Mail: margarete.lehne@kit.edu

Being "the Research University in the Helmholtz Association," KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 24,400 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

This press release is available on the internet at http://www.sek.kit.edu/presse.php

The photos in the best quality available to us may be downloaded under http://www.kit.edu or requested by mail to presse@kit.edu or phone +49 721 608-21105. The photos may be used in the context given above exclusively.

Karlsruher Institut für Technologie (KIT)

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.