New algorithm for personalized models of human cardiac electrophysiology

July 02, 2020

Researchers from the Moscow Institute of Physics and Technology, Kazan Federal University, and George Washington University have proposed an algorithm for producing patient-specific mathematical models describing the electrical excitation of human heart cells. Published in PLOS One, the study looks at two possible approaches - one using experimental records of electrical activity and the other based on gene expression profiles.

Each heart contraction is caused by a preceding electrical excitation, the so-called action potential. The latter results from electrical currents through ion channels. The number of such channels forming ion currents varies with both pathological conditions and the individual properties of heart tissue in healthy patients. When the balance between various types of ion currents gets disrupted, this may lead to dangerous arrhythmias and death.

Since many factors are involved in excitation propagation, the studies investigating the basic principles underlying arrhythmia have relied on mathematical models over the past 50 years. Despite the effort behind developing these models, they are so far rarely used in the clinical practice, mainly because they describe a hypothesized average patient. The research reported in this story addresses the challenging task of applying such models to real individual patients.

The first approach discussed in the paper relies on experimental recordings of action potential and subsequent model optimization using dedicated computer algorithms. They employ evolutionary principles to find the parameters that make the model reproduce the experiment. Randomly generated models are subjected to selection, crossover, and mutation. Prior research by a number of scientific groups has identified the key challenge faced by this approach. Namely, it is hard to find the unique solution, because of the numerous distinct combinations of parameters that result in the same action potential waveform.

Study co-author Andrey Pikunov from the MIPT Laboratory of Human Physiology commented: "We have closely examined and optimized the algorithm's pipeline at every stage. For instance, previously, model parameters were subjected to mutation independently from each other, whereas we used 'vector mutation,' affecting all parameters at once. This makes the search for the right model parameters considerably more efficient. Along with other modifications we have developed an algorithm that determines the conductivities of the main ion channels with a high degree of precision."

The second approach discussed in the article uses the gene expression data, which determine how the genetic information is converted into RNAs and proteins. Each ion channel in the cell membrane is made of protein subunits incorporated into the membrane following translation from the matrix RNA. The amount of such expressed RNA can be measured, but it has so far been impossible to use these data to predict the electrophysiological features specific to a certain patient. The researchers calibrated the model on one actual patient, using the algorithms mentioned above. Then the differences between gene expression profiles were used to create mathematical models successfully predicting the action potential for other patients based on their individual gene expression profiles.

The head of the MIPT Laboratory of Human Physiology, study co-author Roman Syunyaev added: "Aside from the fundamental interest, this research has far-reaching practical applications, from using patient-specific models in the clinical practice to drug design. Many medications act on ion channels, and our algorithms can provide insights into how certain drugs affect the heart cells' electrophysiology. This information can be extracted from measurements of the action potential."
The research reported in this story was supported by grants of the Russian Foundation for Basic Research and the Russian Science Foundation.

The Laboratory of Human Physiology is part of the Phystech School of Biological and Medical Physics, a division of the Moscow Institute of Physics and Technology. The laboratory employs computer modeling to study the formation of rhythm, arrhythmia, and fibrillation in the heart, and the dynamics of vortex autowave structures.

Moscow Institute of Physics and Technology

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to