Nav: Home

University of Oregon scientists dissociate water apart efficiently with new catalysts

July 02, 2020

EUGENE, Ore. -- July 2, 2020 -- University of Oregon chemists have made substantial gains in enhancing the catalytic water dissociation reaction in electrochemical reactors, called bipolar membrane electrolyzers, to more efficiently rip apart water molecules into positively charged protons and negatively charged hydroxide ions.

The discovery, published online ahead of print in the journal Science, provides a roadmap to realize electrochemical devices that benefit from the key property of bipolar membranes operation -- to generate the protons and hydroxide ions inside the device and supply the ions directly to the electrodes to produce the final chemical products.

The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. While they've been applied industrially on a small scale, their performance is currently limited to low current-density operation, which hampers broader applications.

Among them are devices to produce hydrogen gas from water and electricity, capture carbon dioxide from seawater, and make carbon-based fuels directly from carbon dioxide, said co-author Shannon W. Boettcher, a professor in the UO's Department of Chemistry and Biochemistry and founding director of the Oregon Center for Electrochemistry,

"I suspect our findings will accelerate a resurgence in the development of bipolar-membrane devices and research into the fundamentals of the water-dissociation reaction," said Boettcher, who also is a member of the Materials Science Institute and an associate in the UO's Phil and Penny Knight Campus for Accelerating Scientific Impact.

"The performance we demonstrated is sufficiently high," he said. "If we can improve durability and manufacture the bipolar membranes with our industry partners, there should be important immediate applications."

Typically, water-based electrochemical devices such as batteries, fuel cells and electrolyzers operate at a single pH across the whole system -- that is, the system is either acidic or basic, said the study's lead author Sebastian Z. Oener, a postdoctoral scholar supported by a German Research Foundation fellowship in Boettcher's lab.

"Often, this leads either to using expensive precious metals to catalyze electrode reactions, such as iridium, one of the rarest metals on earth, or sacrificing catalyst activity, which, in turn, increases the required energy input of the electrochemical reactor," Oener said. "A bipolar membrane can overcome this trade-off by operating each electrocatalyst locally in its ideal pH environment. This increases the breath of stable, earth-abundant catalyst availability for each half-reaction."

The three-member team, which also included graduate student Marc J. Foster, used a membrane-electrode assembly where the polymer bipolar membrane is compressed between two rigid porous electrodes. This approach allowed them to make a large number of bipolar membranes with different water dissociation catalyst layers and accurately measure the activity for each.

The team found that the exact position of each catalyst layer inside the bipolar membrane junction -- the interface between a hydroxide-conducting layer and the proton conducting layer in the bipolar membrane -- dramatically affects the catalyst activity. This allowed them to use catalyst bilayers to realize record-performing bipolar membranes that essentially dissociate water with negligible lost extra energy input.

"The biggest surprise was the realization that the performance could be improved substantially by layering different types of catalysts on top of each other," Boettcher said. "This is simple but hadn't been explored fully."

A second key finding, Oener said, is that the water dissociation reaction occurring inside the bipolar membrane is fundamentally related to that which occurs on electrocatalyst surfaces, such as when protons are extracted directly from water molecules when making hydrogen fuel in basic pH conditions.

"This is unique because it has not before been possible to separate the individual steps that occur during an electrochemical reaction," Oener said. "They are all linked, involving electrons and intermediates, and rapidly proceed in series. The bipolar membrane architecture allows us to isolate the water dissociation chemical step and study it in isolation."

That finding, he said, also could lead to improved electrocatalysts for reactions that directly make reduced fuels from water, such as making hydrogen gas or liquid fuel from waste carbon dioxide.

The discoveries, Boettcher said, provide a tentative mechanistic model, one that could open up the field and motivate many more studies.

"We are excited to see the response of the research community and see if these findings can be translated to products that reduce society's reliance on fossil fuels," he said.
-end-
The co-authors are seeking a patent for the bipolar membrane technology they developed. The National Science Foundation's Chemical Catalysis Program supported the research.

Links:

About Shannon Boettcher: https://boettcher.uoregon.edu

Oregon Center for Electrochemistry: https://electrochemistry.uoregon.edu/

Department of Chemistry and Biochemistry: https://chemistry.uoregon.edu

Materials Science Institute: https://materialscience.uoregon.edu

Phil and Penny Knight Campus for Accelerating Scientific Impact: https://accelerate.uoregon.edu/

University of Oregon

Related Water Molecules Articles:

Chemistry's Feng Lin Lab is splitting water molecules for a renewable energy future
Feng Lin, an assistant professor of chemistry in the Virginia Tech College of Science, is focusing on energy storage and conversion research.
How a crystalline sponge sheds water molecules
How does water leave a sponge? In a new study, scientists answer this question in detail for a porous, crystalline material made from metal and organic building blocks -- specifically, cobalt(II) sulfate heptahydrate, 5-aminoisophthalic acid and 4,4'-bipyridine.
Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.
Liquid water is more than just H2O molecules
Skoltech scientists in collaboration with researchers from the University of Stuttgart showed that the concentration of short-lived ions (H3O+ and OH-) in pure liquid water is much higher than that assumed to evaluate the pH, hence significantly changing our understanding of the dynamical structure of water.
'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.
Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.
Unique structural fluctuations at ice surface promote autoionization of water molecules
Hydrated protons at the surface of water ice are of fundamental importance in a variety of physicochemical phenomena on earth and in the universe.
Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.
The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
More Water Molecules News and Water Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.