Nav: Home

Scientists reveal why tummy bugs are so good at swimming through your gut

July 02, 2020

Researchers have solved the mystery of why a species of bacteria that causes food poisoning can swim faster in stickier liquids, such as within guts.

The findings could potentially help scientists halt the bacteria in its tracks, because they show how the shape of the bacteria's body and the components that help it swim are all dependent on each other to work. This means any disruption to one part could stop the bacteria getting through to the gut.

Campylobacter jejuni is responsible for millions of food poisoning cases every year, and a key step in its invasion of the body is swimming through the viscous (sticky) mucous layer of the guts. Researchers have observed that C. jejuni swims faster in viscous liquids than in less-viscous liquids, like water, but until now they didn't know why.

Now, researchers from Imperial College London, Gakushuin University in Tokyo and the University of Texas Southwestern Medical Center have filmed C. jejuni in action to uncover the mystery. Their results are published today in PLOS Pathogens.

C. jejuni uses its two opposing tails, called flagella, to help it move. It has a flagellum at each end of its body that spin around to propel itself through liquid. However, the opposing flagella have confused scientists.

Co-first author Dr Eli Cohen, from the Department of Life Sciences at Imperial, said: "It seemed very strange that the bacteria had a tail at both ends - it's like having two opposing motors at either end of a ship. It was only when we watched the bacteria in action that we could see how the two tails work cleverly together to help the bacteria move through the body."

The team created C. jejuni strains that have fluorescent flagella and used high-speed microscopy to see what happened as they swam around. They discovered that to move forward, the bacteria wrap their leading flagella around their helically shaped bodies, meaning both flagella were then pointing in the same direction and providing unified thrust.

To change direction, they changed which flagella were wrapped around their body, enabling quick 180 degree turns and potential escape from confined spaces.

They also found that the process of wrapping the flagella was easier when swimming through viscous liquids; the stickiness helping push the leading flagella back around the body. In less-viscous liquids neither flagella were able to wrap around the body.

Lead researcher Dr Morgan Beeby, from the Department of Life Sciences at Imperial, said: "Our study kills two birds with one stone: in setting out to understand how C. jejuni moves, we resolved the apparent paradoxes of how it swims in one direction with opposing flagella and how it swims faster in more viscous liquid.

"As well as solving some long-standing mysteries, the research could also help researchers find new way to prevent infection by C. jejuni, by targeting any of its interconnected structures that help it move around."

The research also revealed that the helical shape of the bacteria body is crucial for allowing the flagella to wrap around it, showing how the two components are reliant on each other. This adds to the team's previous work showing how parts of the 'motor' that drives the flagella are co-dependent, and that none would work without the others.
-end-


Imperial College London

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.