Nav: Home

Research reflects how AI sees through the looking glass

July 02, 2020

ITHACA, N.Y. - Things are different on the other side of the mirror.

Text is backward. Clocks run counterclockwise. Cars drive on the wrong side of the road. Right hands become left hands.

Intrigued by how reflection changes images in subtle and not-so-subtle ways, a team of Cornell University researchers used artificial intelligence to investigate what sets originals apart from their reflections. Their algorithms learned to pick up on unexpected clues such as hair parts, gaze direction and, surprisingly, beards - findings with implications for training machine learning models and detecting faked images.

"The universe is not symmetrical. If you flip an image, there are differences," said Noah Snavely, associate professor of computer science at Cornell Tech and senior author of the study, "Visual Chirality," presented at the 2020 Conference on Computer Vision and Pattern Recognition, held virtually June 14-19. "I'm intrigued by the discoveries you can make with new ways of gleaning information."

Zhiqui Lin is the paper's first author; co-authors are Abe Davis, assistant professor of computer science, and Cornell Tech postdoctoral researcher Jin Sun.

Differentiating between original images and reflections is a surprisingly easy task for AI, Snavely said - a basic deep learning algorithm can quickly learn how to classify if an image has been flipped with 60% to 90% accuracy, depending on the kinds of images used to train the algorithm. Many of the clues it picks up on are difficult for humans to notice.

For this study, the team developed technology to create a heat map that indicates the parts of the image that are of interest to the algorithm, to gain insight into how it makes these decisions.

They discovered, not surprisingly, that the most commonly used clue was text, which looks different backward in every written language. To learn more, they removed images with text from their data set, and found that the next set of characteristics the model focused on included wrist watches, shirt collars (buttons tend to be on the left side), faces and phones - which most people tend to carry in their right hands - as well as other factors revealing right-handedness.

The researchers were intrigued by the algorithm's tendency to focus on faces, which don't seem obviously asymmetrical. "In some ways, it left more questions than answers," Snavely said.

They then conducted another study focusing on faces and found that the heat map lit up on areas including hair part, eye gaze - most people, for reasons the researchers don't know, gaze to the left in portrait photos - and beards.

Snavely said he and his team members have no idea what information the algorithm is finding in beards, but they hypothesized that the way people comb or shave their faces could reveal handedness.

"It's a form of visual discovery," Snavely said. "If you can run machine learning at scale on millions and millions of images, maybe you can start to discover new facts about the world."

Each of these clues individually may be unreliable, but the algorithm can build greater confidence by combining multiple clues, the findings showed. The researchers also found that the algorithm uses low-level signals, stemming from the way cameras process images, to make its decisions.

Though more study is needed, the findings could impact the way machine learning models are trained. These models need vast numbers of images in order to learn how to classify and identify pictures, so computer scientists often use reflections of existing images to effectively double their datasets.

Examining how these reflected images differ from the originals could reveal information about possible biases in machine learning that might lead to inaccurate results, Snavely said.

"This leads to an open question for the computer vision community, which is, when is it OK to do this flipping to augment your dataset, and when is it not OK?" he said. "I'm hoping this will get people to think more about these questions and start to develop tools to understand how it's biasing the algorithm."

Understanding how reflection changes an image could also help use AI to identify images that have been faked or doctored - an issue of growing concern on the internet.

"This is perhaps a new tool or insight that can be used in the universe of image forensics, if you want to tell if something is real or not," Snavely said.
-end-
The research was supported in part by philanthropists Eric Schmidt, former CEO of Google, and Wendy Schmidt.

Cornell University

Related Algorithm Articles:

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.
QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.
New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.
Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.
New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.
A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.
New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.
New algorithm to help process biological images
Skoltech researchers have presented a new biological image processing method that accurately picks out specific biological objects in complex images.
Skoltech scientists break Google's quantum algorithm
In the near term, Google has devised new quantum enhanced algorithms that operate in the presence of realistic noise.
The most human algorithm
A team from the research group SEES:lab of the Department of Chemical Engineering of the Universitat Rovira I Virgili and ICREA has made a breakthrough with the development of a new algorithm that makes more accurate predictions and generates mathematical models that also make it possible to understand these predictions.
More Algorithm News and Algorithm Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.