Cold-climate creatures may be the ultimate survivors of global warming, study finds

July 03, 2003

Science has a way of forcing us to reexamine some of our basic assumptions about nature. Consider the following statement: Animals that thrive in high temperatures are more likely to survive global warming than those that are less tolerant to heat. While this conclusion may seem obvious, a new study in the journal Science finds that the opposite may be true.

In an experiment published in the July 4 edition of Science, Stanford University postdoctoral fellow Jonathon H. Stillman examined the effect of climate change on porcelain crabs (genus Petrolisthes) - inch-long invertebrates that inhabit coastal areas throughout the Pacific Ocean. Stillman discovered that porcelain crabs in the cool Pacific Northwest have the ability to adjust to larger increases in habitat temperature than crabs living in the warm coastal waters of Mexico.

The study showed that cold-water crabs have a greater capacity to adjust their heat-tolerance thresholds than warm-water crabs," said Stillman, who conducted the experiment at Stanford's Hopkins Marine Station in Pacific Grove, Calif. This is definitely counterintuitive. You would expect heat-tolerant organisms to be the most resilient to global warming, but it turns out they may have a harder time surviving as their habitat temperatures increase," he added, noting that a half-degree increase in the Earth's temperature could be enough to wipe out countless porcelain crabs:

Thermal tolerance

Stillman's experiment focused on four species of porcelain crab - two from the chilly coast off Cape Arago, Ore., and two from Puerto Peñasco, Mexico, located on the Gulf of California.

The Oregon species - P. cinctipes and P. eriomerus - reside in intertidal habitats where ocean temperatures range from 47-59 degrees F (8-15 C). The temperature of P. cinctipes, which lives higher on shore in the upper intertidal zone, can be as high as 88 F (31 C) during summer low tides.

The Mexican species - P. gracilis and P. hirtipes - thrive in 54-86 F (12-30 C) waters. The temperature of P. gracilis, which lives in the upper intertidal zone, can reach 106 F (41 C) during summer low tides.

For the experiment, Stillman collected live specimens of all four species and transported them to Hopkins Marine Station where they were kept in temperature-controlled aquariums for several weeks. Crabs from Oregon were held at a constant temperature of either 47 F (8 C) or 65 F (18 C), and crabs from Mexico were kept at temperatures of 59 F (15 C) or 77 F (25 C).

"The idea was to allow the animals to acclimate to cold or warm temperatures that reflect what they'd likely encounter in the wild," Stillman explained.

Once acclimated, each crab was fitted with electrodes to allow monitoring of cardiac activity. The animal then was placed in an experimental chamber where the temperature was either raised or lowered 0.1 C every minute until its heart stopped beating - a point known as the "upper thermal tolerance limit." The goal was to determine which crabs were most likely to survive a temperature increase of 4-6 F (2-3 C), which climate experts say could occur in the next century as a result of global warming.

Surprising results

"The results were surprising," Stillman said. It turned out that cold-water crabs were able to change their upper thermal tolerance limit much more readily than those from hotter climates. In fact, the top survivor in the experiment was Oregon's P. eriomerus, which lives in the coolest habitat of all four species studied. Stillman discovered that P. eriomerus crabs that were acclimated to 47 F (8 C) temperatures succumbed when the thermometer reached 83 F (28.5 C). However, those acclimated to 65 F (18 C) tank water survived temperatures of nearly 87 F (30.5 C).

"That's a change of 4 F (2 C) in the upper thermal tolerance limit, which shows that P. eriomerus has a strong capacity for thermal acclimation," Stillman said. "And since the maximal habitat temperature for this species is around 61 F (16 C), this species would likely survive a 4-6 F (2-3 C) temperature increase caused by global warming."

At the other extreme, Mexico's P. gracillis, whose habitat sometimes reaches 105.8 F (41 C), had the poorest showing. The study found that P. gracillis crabs housed in 77 F (25 C) tank water had an upper thermal tolerance limit of about106.2 F (41.2 C) - only a fraction of a degree higher than those kept at 59 F (15 C),

"Thus, during the hottest summer low tides, P. gracilis experiences habitat temperatures right at the edge of its thermal range," Stillman observed. "Because this species has a limited capacity to adjust that range, it will be impacted by global warming-related increases in habitat temperature."

Stillman concluded that species with the greatest capacity to change their upper tolerance limits, such as P. eriomerus, were the least heat-tolerant: "On the other hand, creatures such as P. gracillis, which have evolved the greatest tolerance to high temperatures, have a lower capacity for thermal acclimation - and it's those species that will be the most susceptible to global warming. Perhaps it's an evolutionary trade-off: To survive those really high temperatures in the summer, these animals havegiven up their ability to adjust their thermal limits."

According to Stillman, even a relatively small rise in global temperatures could have dramatic consequences: "Species like P. gracillis won't be able to acclimatize to a 0.5 C climate change, but species like P. eriomerus will be fine."

He noted that global warming already appears to have reduced the population of P. cinctipes - a species that ranges from California to British Columbia. However, Stillman points out that skeptics - including several leading economists - question whether such biological change is the direct result of climate change.

"My colleagues at Stanford have shown that, in the last 60 years, P. cinctipes and other marine invertebrates have been moving northward as sea surface temperatures rises," he said. "Perhaps this study will provide a physiological mechanism that explains why this and other population shifts are occurring around the world."

Stillman is expected to join the faculty of the University of Hawaii at Manoa in August. His study was supported by grants from the National Science Foundation and the David and Lucile Packard Foundation.
-end-
By Mark Shwartz

CONTACT: Mark Shwartz, News Service: 650-723-9296, mshwartz@stanford.edu
COMMENT: Jonathon Stillman, Hopkins Marine Station: 831-655-6238 or 415-608-7923, JStillman@stanford.edu

EDITORS: The study, "Acclimation Capacity Underlies Climate Change Susceptibility," appears in the July 4 issue of Science. A copy of the embargoed study can be obtained from the AAAS Office of Public Programs in Washington, D.C., at 202-326-6440 or scipak@aaas.org. A photo is available at http://newsphotos.stanford.edu (slug: "Crab").

Relevant Web URLs:
http://news-service.stanford.edu/news/november15/warming-1115.html
http://www.stanford.edu/group/MicheliLab/RafesPage/pdfs/BarryEtAl.pdf
http://www.mbayaq.org/efc/living_species/default.asp?hOri=1&inhab=420

Stanford University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.