Military sonar can alter blue whale behavior

July 03, 2013

DURHAM, N.C. -- Some blue whales off the coast of California change their behavior when exposed to the sort of underwater sounds used during U.S. military exercises. The whales may alter diving behavior or temporarily avoid important feeding areas, according to new research.

The Southern California Behavioral Response Study exposed tagged blue whales in the California Bight to simulated mid-frequency (3.5-4 kHz) sonar sounds significantly less intense than the military uses.

"Whales clearly respond in some conditions by modifying diving behavior and temporarily avoiding areas where sounds were produced," said lead author Jeremy Goldbogen of Cascadia Research. "But overall the responses are complex and depend on a number of interacting factors," including whether the whales were feeding deep, shallow or not at all.

The study, funded by the U.S. Navy Chief of Naval Operations Environmental Readiness Division and the U.S. Office of Naval Research, appears July 3 in the Proceedings of the Royal Society B.

The scientists tagged the whales with non-invasive suction cups, which recorded acoustic data and high-resolution movements as the animals were exposed to the controlled sounds. "The tag technology we use offers a unique glimpse into the underwater behavior of whales that otherwise would not be possible," said Ari Friedlaender, a research scientist at the Duke Marine Laboratory.

The scientists found that some of the whales engaged in deep feeding stopped eating and either sped up or moved away from the source of the noise. Not all of the whales responded to the noise, and not all in the same way.

"Blue whales are the largest animals that have ever lived. Populations globally remain at a fraction of their former numbers prior to whaling, and they appear regularly off the southern California coast, where they feed," said John Calambokidis, one of the project's lead investigators of Cascadia Research.

That area of the ocean is also the site of military training and testing exercises that involve loud mid-frequency sonar signals. Such sonar exercises have been associated with several unusual strandings of other marine mammal species (typically beaked whales) in the past. Until this study, almost no information was available about whether and how blue whales respond to sonar.

"These are the first direct measurements of individual responses for any baleen whale species to these kinds of mid-frequency sonar signals," said Brandon Southall, SOCAL-BRS chief scientist from SEA, Inc., and an adjunct researcher at both Duke and the University of California Santa Cruz. "These findings help us understand risks to these animals from human sound and inform timely conservation and management decisions."

A related paper published July 3 by the same research team in Biology Letters has shown clear and even stronger responses of Cuvier's beaked whales to simulated mid-frequency sonar exposures. Beaked whales showed a variety of responses to both real, military sonar in the distance and nearby simulated sonar. What the beaked whales were doing at the time appeared to be a key factor affecting their reactions.
-end-
CITATION: "Blue whales respond to simulated mid-frequency military sonar," Jeremy Goldbogen, Brandon Southall, et al. Proceedings of the Royal Society B, July 3, 2013. DOI -10.1098/rspb.2013.0657

Related Online Resources:

Blue whale manuscript (Open Access): http://rspb.royalsocietypublishing.org/lookup/doi/10.1098/rspb.2013.0657

Beaked whale manuscript (Open Access): http://rsbl.royalsocietypublishing.org/content/9/4/20130223

SOCAL-BRS website: http://sea-inc.net/socal-brs/

Duke University

Related Behavior Articles from Brightsurf:

Variety in the migratory behavior of blackcaps
The birds have variable migration strategies.

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.

How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.

I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.

Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.

AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.

Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.

Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.

Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.

Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.

Read More: Behavior News and Behavior Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.