Bacteria communicate to help each other resist antibiotics

July 03, 2013

New research from Western University unravels a novel means of communication that allows bacteria such as Burkholderia cenocepacia (B. cenocepacia) to resist antibiotic treatment. B. cenocepacia is an environmental bacterium that causes devastating infections in patients with cystic fibrosis (CF) or with compromised immune systems.

Dr. Miguel Valvano and first author Omar El-Halfawy, PhD candidate, show that the more antibiotic resistant cells within a bacterial population produce and share small molecules with less resistant cells, making them more resistant to antibiotic killing. These small molecules, which are derived from modified amino acids (the building blocks used to make proteins), protect not only the more sensitive cells of B. cenocepacia but also other bacteria including a highly prevalent CF pathogen, Pseudomonas aeruginosa, and E. coli. The research is published in PLOS ONE.

"These findings reveal a new mechanism of antimicrobial resistance based on chemical communication among bacterial cells by small molecules that protect against the effect of antibiotics," says Dr. Valvano, adjunct professor in the Department of Microbiology and Immunology at Western's Schulich School of Medicine & Dentistry, currently a Professor and Chair at Queen's University Belfast. "This paves the way to design novel drugs to block the effects of these chemicals, thus effectively reducing the burden of antimicrobial resistance."

"These small molecules can be utilized and produced by almost all bacteria with limited exceptions, so we can regard these small molecules as a universal language that can be understood by most bacteria," says El-Halfawy, who called the findings exciting. "The other way that Burkholderia communicates its high level of resistance is by releasing small proteins to mop up, and bind to lethal antibiotics, thus reducing their effectiveness." The next step is to find ways to inhibit this phenomenon.

The research, conducted at Western, was funded by a grant from Cystic Fibrosis Canada and also through a Marie Curie Career Integration grant.
-end-
The paper, titled "Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells," can be found at: http://dx.plos.org/10.1371/journal.pone.0068874

University of Western Ontario

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.